【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】
大家都知道图像处理非常地重要,因为它不仅仅是可以用于拍照美颜,而且在工业、医疗和军事等方面也发挥着巨大的作用。另外一点大家有所不知的是,在工业上,图像处理排名靠前的几家公司,长期都是高毛利、高利润的代名词。这一次QT开发,我们正好可以借助于opencv开源库,做一个简单的图像处理软件。
1、创建一个简单的qt widget工程
我们需要这个工程,仅仅是引用它的一个框架。唯一需要注意的是,创建工程的时候,一定要选择64位。
2、安装opencv库
之前一直认为windows上面opencv库都需要自己编译的,但是没想到在opencv官方网站,都是已经编译好的头文件和静态库和动态库。有了这几点,使用起来就非常方便了。这个安装包,就是编译好的压缩库,里面有头文件、lib文件和dll文件而已。
https://opencv.org/releases/
3、设置include目录
安装了opencv之后,那么刚才创建的工程,就一定需要把opencv include目录包进来。注意选择的时候,一定是x64下面的目录,而不是x86下面的目录,这一点很容易混肴的。
4、设置静态库的链接
除了头文件的编译之外,opencv静态库链接也是非常需要的。不然的话,代码即使编译通过了,最后也会链接不过的。所以,还要在x64环境下选择静态库的链接地址,
5、修改main.cpp代码
main.cpp代码其实比较简单。首先注释掉原来所有代码,接着就是创建一个Mat的image,在二值化之后通过QImage转成QPixmap,最后把QPixmap贴到一个label标签上。有了前面的头文件和lib文件,这边编译应该没有什么问题了。
#include <QtWidgets/QApplication>
#include <opencv2/opencv.hpp>
#include <QImage>
#include <QPixmap>
#include <QLabel>int main(int argc, char *argv[])
{QApplication a(argc, argv);// 读取图像cv::Mat originalImage = cv::imread("lena.png");// 将图像灰度化cv::Mat grayImage;cv::cvtColor(originalImage, grayImage, cv::COLOR_BGR2GRAY);// 将灰度图像进行二值化处理cv::Mat binaryImage;cv::threshold(grayImage, binaryImage, 128, 255, cv::THRESH_BINARY);// 将OpenCV二值化图像转换为Qt图像QImage qImage(binaryImage.data, binaryImage.cols, binaryImage.rows, binaryImage.step, QImage::Format_Grayscale8);QPixmap pixmap = QPixmap::fromImage(qImage);// 在Qt界面中显示二值化图像QLabel label;label.setPixmap(pixmap);label.show();return a.exec();
}
6、拷贝opencv的dll文件到可执行文件目录
生成的exe既依赖于qt,也依赖于opencv。那么依赖于opencv的这部分呢,可以直接把对应的dll文件copy到生成的exe目录下,qt这部分可以通过直接vs2017 debug调试启动的方式来解决。
7、寻找vcruntime140_1d.dll
实际运行的时候,系统还会提示我们,当前没有vcruntime140_1d.dll这个文件。关于这个文件,应该是opencv编译的时候涉及到的,可以通过下面这个网站进行查找,拷贝到exe目录下即可,
https://cn.dll-files.com/vcruntime140_1d.dll.html
8、下载测试图片lena.png
所有程序都准备好了,那么下面需要的就是测试图片。这部分呢,我们可以去寻找最经典的测试图片lena.png,比如可以从如下这个地址进行考虑。当然,图片记得一定放在h文件、cpp文件同级目录下。
https://github.com/mikolalysenko/lena/blob/master/lena.png
9、开始测试
程序、动态库、图片都准备好之后,就可以测试了。这个时候,我们在vs2017下面启动调试程序,不出意外的话,就可以看到一张灰化的二值化图片。