16|连接数据库:通过链和代理查询鲜花信息

16|连接数据库:通过链和代理查询鲜花信息

新的数据库查询范式

下面这个图,非常清晰地解释了这个以 LLM 为驱动引擎,从自然语言的(模糊)询问,到自然语言的查询结果输出的流程。

img

这种范式结合了自然语言处理和传统数据库查询的功能,为用户提供了一个更为直观和高效的交互方式。下面我来解释下这个过程。

  1. 提出问题:用户用自然语言提出一个问题,例如“去年的总销售额是多少?”。
  2. LLM 理解并转译:LLM 首先会解析这个问题,理解其背后的意图和所需的信息。接着,模型会根据解析的内容,生成相应的 SQL 查询语句,例如 “SELECT SUM(sales) FROM sales_data WHERE year = ‘last_year’;”。
  3. 执行 SQL 查询:生成的 SQL 查询语句会被发送到相应的数据库进行执行。数据库处理这个查询,并返回所需的数据结果。
  4. LLM 接收并解释结果:当数据库返回查询结果后,LLM 会接收到这些数据。然后,LLM 会开始解析这些数据,并将其转化为更容易被人类理解的答案格式。
  5. 提供答案:最后,LLM 将结果转化为自然语言答案,并返回给用户。例如“去年的总销售额为 1,000,000 元”。

你看,用户不需要知道数据库的结构,也不需要具备编写 SQL 的技能。他们只需要用自然语言提问,然后就可以得到他们所需的答案。这大大简化了与数据库的交互过程,并为各种应用场景提供了巨大的潜力。

实战案例背景信息

下面我们将通过 LangChain 实现这个新的数据库应用开发范式。

在这个实战案例中,我们的所有业务数据都存储在数据库中,而目标则是通过自然语言来为销售的每一种鲜花数据创建各种查询。这样,无论是员工还是顾客,当他们想了解某种鲜花的价格时,都可以快速地生成适当的查询语句。

这就大大简化了查询过程和难度。

首先,这个应用可以被简单地用作一个查询工具,允许员工在存货或销售系统中快速查找价格。员工不再需要记住复杂的查询语句或进行手动搜索,只需选择鲜花种类,告诉系统他所想要的东西,系统就会为他们生成正确的查询。

其次,这个模板也可以被整合到一个聊天机器人或客服机器人中。顾客可以直接向机器人询问:“红玫瑰的价格是多少?” 机器人会根据输入内容来调用 LangChain 和 LLM,生成适当的查询,然后返回确切的价格给顾客。这样,不仅提高了服务效率,还增强了用户体验。

了解完项目的背景信息,下面我们就开始行动吧!

创建数据库表

首先,让我们创建一系列的数据库表,存储易速鲜花的业务数据。

这里,我们使用 SQLite 作为我们的示例数据库。它提供了轻量级的磁盘文件数据库,并不需要单独的服务器进程或系统,应用程序可以直接与数据库文件交互。同时,它也不需要配置、安装或管理,非常适合桌面应用、嵌入式应用或初创企业的简单需求。

SQLite 支持 ACID(原子性、一致性、隔离性、持久性),这意味着你的数据库操作即使在系统崩溃或电源失败的情况下也是安全的。虽然 SQLite 被认为是轻量级的,但它支持大多数 SQL 的标准特性,包括事务、触发器和视图。

因此,它也特别适用于那些不需要大型数据库系统带来的全部功能,但仍然需要数据持久性的应用程序,如移动应用或小型 Web 应用。当然,也非常适合我们做 Demo。

sqlite3 库,则是 Python 内置的轻量级 SQLite 数据库。通过 sqlite3 库,Python 为开发者提供了一个简单、直接的方式来创建、查询和管理 SQLite 数据库。当你安装 Python 时,sqlite3 模块已经包含在内,无需再进行额外的安装。

基于这个 sqlite3 库,创建业务数据的代码如下:

# 导入sqlite3库
import sqlite3# 连接到数据库
conn = sqlite3.connect('FlowerShop.db')
cursor = conn.cursor()# 执行SQL命令来创建Flowers表
cursor.execute('''CREATE TABLE Flowers (ID INTEGER PRIMARY KEY, Name TEXT NOT NULL, Type TEXT NOT NULL, Source TEXT NOT NULL, PurchasePrice REAL, SalePrice REAL,StockQuantity INTEGER, SoldQuantity INTEGER, ExpiryDate DATE,  Description TEXT, EntryDate DATE DEFAULT CURRENT_DATE );''')# 插入5种鲜花的数据
flowers = [('Rose', 'Flower', 'France', 1.2, 2.5, 100, 10, '2023-12-31', 'A beautiful red rose'),('Tulip', 'Flower', 'Netherlands', 0.8, 2.0, 150, 25, '2023-12-31', 'A colorful tulip'),('Lily', 'Flower', 'China', 1.5, 3.0, 80, 5, '2023-12-31', 'An elegant white lily'),('Daisy', 'Flower', 'USA', 0.7, 1.8, 120, 15, '2023-12-31', 'A cheerful daisy flower'),('Orchid', 'Flower', 'Brazil', 2.0, 4.0, 50, 2, '2023-12-31', 'A delicate purple orchid')
]for flower in flowers:cursor.execute('''INSERT INTO Flowers (Name, Type, Source, PurchasePrice, SalePrice, StockQuantity, SoldQuantity, ExpiryDate, Description) VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?);''', flower)# 提交更改
conn.commit()# 关闭数据库连接
conn.close()

首先,我们连接到 FlowerShop.db 数据库。然后,我们创建一个名为 Flowers 的新表,此表将存储与每种鲜花相关的各种数据。

该表有以下字段:

img

接着,我们创建了一个名为 flowers 的列表,其中包含 5 种鲜花的所有相关数据。使用 for 循环,我们遍历 flowers 列表,并将每种鲜花的数据插入到 Flowers 表中。然后提交这些更改,把它们保存到数据库中。最后,我们关闭与数据库的连接。

用 Chain 查询数据库

因为 LangChain 的数据库查询功能较新,目前还处于实验阶段,因此,需要先安装 langchain-experimental 包,这个包含有实验性的 LangChain 新功能。

pip install langchain-experimental

下面,我们就开始通过 SQLDatabaseChain 来查询数据库。代码如下:

# 导入langchain的实用工具和相关的模块
from langchain.utilities import SQLDatabase
from langchain.llms import OpenAI
from langchain_experimental.sql import SQLDatabaseChain# 连接到FlowerShop数据库(之前我们使用的是Chinook.db)
db = SQLDatabase.from_uri("sqlite:///FlowerShop.db")# 创建OpenAI的低级语言模型(LLM)实例,这里我们设置温度为0,意味着模型输出会更加确定性
llm = OpenAI(temperature=0, verbose=True)# 创建SQL数据库链实例,它允许我们使用LLM来查询SQL数据库
db_chain = SQLDatabaseChain.from_llm(llm, db, verbose=True)# 运行与鲜花运营相关的问题
response = db_chain.run("有多少种不同的鲜花?")
print(response)response = db_chain.run("哪种鲜花的存货数量最少?")
print(response)response = db_chain.run("平均销售价格是多少?")
print(response)response = db_chain.run("从法国进口的鲜花有多少种?")
print(response)response = db_chain.run("哪种鲜花的销售量最高?")
print(response)

这里,我们导入必要的 LangChain 模块,然后连接到 FlowerShop 数据库,初始化 OpenAI 的 LLM 实例。之后用 SQLDatabaseChain 来创建一个从 LLM 到数据库的链接。

最后,用 db_chain.run() 方法来查询多个与鲜花运营相关的问题,Chain 的内部会把这些自然语言转换为 SQL 语句,并查询数据库表,得到查询结果之后,又通过 LLM 把这个结果转换成自然语言。

因此,Chain 的输出结果是我们可以理解的,也是可以直接传递给 Chatbot 的人话。

输出如下:

img

SQLDatabaseChain 调用大语言模型,完美地完成了从自然语言(输入)到自然语言(输出)的新型 SQL 查询。

用 Agent 查询数据库

除了通过 Chain 完成数据库查询之外,LangChain 还可以通过 SQL Agent 来完成查询任务。相比 SQLDatabaseChain,使用 SQL 代理有一些优点。

  • 它可以根据数据库的架构以及数据库的内容回答问题(例如它会检索特定表的描述)。
  • 它具有纠错能力,当执行生成的查询遇到错误时,它能够捕获该错误,然后正确地重新生成并执行新的查询。

LangChain 使用 create_sql_agent 函数来初始化代理,通过这个函数创建的 SQL 代理包含 SQLDatabaseToolkit,这个工具箱中包含以下工具:

  • 创建并执行查询
  • 检查查询语法
  • 检索数据表的描述

在这些工具的辅助之下,代理可以趋动 LLM 完成 SQL 查询任务。代码如下:

from langchain.utilities import SQLDatabase
from langchain.llms import OpenAI
from langchain.agents import create_sql_agent
from langchain.agents.agent_toolkits import SQLDatabaseToolkit
from langchain.agents.agent_types import AgentType# 连接到FlowerShop数据库
db = SQLDatabase.from_uri("sqlite:///FlowerShop.db")
llm = OpenAI(temperature=0, verbose=True)# 创建SQL Agent
agent_executor = create_sql_agent(llm=llm,toolkit=SQLDatabaseToolkit(db=db, llm=llm),verbose=True,agent_type=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
)# 使用Agent执行SQL查询questions = ["哪种鲜花的存货数量最少?","平均销售价格是多少?",
]for question in questions:response = agent_executor.run(question)print(response)

问题 1 的输出如下:

img

问题 2 的输出如下:

img

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/321958.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

elementui loading自定义图标和字体样式

需求:页面是用了很多个loading,需要其中有一个字体大些(具体到图标也一样的方法,换下类名就行) 遇见的问题:改不好的话会影响其他的loading样式(一起改变了) 效果展示 改之前 改之…

C++完成Query执行sql语句的接口封装和测试

1、在LXMysql.h 创建Query执行函数 //封装 执行sql语句 if sqllen 0 strlen获取字符长度bool Query(const char*sql,unsigned long sqllen0); 2、在LXMysql.cpp编写函数 bool LXMysql::Query(const char* sql, unsigned long sqllen){if (!mysql)//如果mysql没有初始化好{c…

知识图谱与云计算

内容来自B站视频 复旦 肖仰华 老师的讲座,记在这里,不然一会就忘了。 https://www.bilibili.com/video/BV1HG4y1h7zK/?p5&spm_id_frompageDriver 智能的发展是由感知到认知,当下需要发展机器的认知能力。 实现认知智能需要人工智能的很…

01第一个Mybatis程序+引入Junit+引入日志文件logback

Mybatis MyBatis本质上就是对JDBC的封装,通过MyBatis完成CRUD。而对于JDBC,SQL语句写死在Java程序中,不灵活。改SQL的话就要改Java代码。违背开闭原则OCP。对于事务机制,MyBatis支持 或managed模式,JDBC模式中MyBatis…

2023-我的CSDN创作之旅

1.博客内容与数量 2023年共发表博客59篇,内容主要集中在GIS,空间分析等领域 主要内容有: networkx学习 Geospatial Data Science Geocomputation ESDA in PySal SHAP Spatial Data Analysis BikeDNA 以下是对这几个章节主要内容的简…

你的网站或许不需要前端构建(二)

前一阵,有朋友问我,能否在不进行前端编译构建的情况下,用现代语法开发网站界面。 于是,就有了这篇文章中提到的方案。 写在前面 这篇文章,依旧不想讨论构建或不构建,哪一种方案对开发更友好,…

改善 GitHub Pages 阅读体验:Quick Docs

一个不到 10MB 的小工具,来提供本地、快速的文档访问,来改善开发过程中,阅读在线文档体验糟糕的问题。 以及,介绍如何快速制作一个利于分发使用的,离线文档工具包。 写在前面 即使现在 AI 辅助编码和 Chat Bot 类的…

【linux】线程同步+基于BlockingQueue的生产者消费者模型

线程同步基于BlockingQueue的生产者消费者模型 1.线程同步2.生产者消费者模型3.基于BlockingQueue的生产者消费者模型 喜欢的点赞,收藏,关注一下把! 1.线程同步 在线程互斥写了一份抢票的代码,我们发现虽然加锁解决了抢到负数票的…

大数据StarRocks(三) StarRocks数据表设计

1. 列式存储 1.1 列式存储方式有以下几个优点: 1.快速的数据查询 由于数据是按照列进行存储的,所以查询某个列时只需要读取该列所在的块,而不是整行数据,从而大大提高了查询效率。 2.压缩效率高 由于列式存储的数据块中只有一…

Linux | 分布式版本控制工具Git【版本管理 + 远程仓库克隆】

文章目录 一、前言二、有关git的相关历史介绍三、Git版本管理1、感性理解 —— 大学生实验报告2、程序员与产品经理3、张三的CEO之路 —— 版本管理工具的诞生 四、如何在Linux上使用Git1、创建仓库2、将仓库克隆到本地3、git三板斧① git add② git commit③ git push 4、有关…

时代新威受邀出席2023年ISC2亚太安全峰会

2023年ISC2亚太安全峰会(Secure Asia Pacific)近日在新加坡滨海湾金沙会议中心成功举办。 该活动由认证网络安全专业网络的全球领导者ISC2组织,旨在解决亚太地区和全球面临的紧迫网络安全挑战。会议为期两天,于2023年12月6日至7日…

Clion STM32 开发环境配置教程

Clion STM32 开发环境配置教程 STM32 CubeMX(6.5) 下载固件库 若固件库还未下载,可在启动界面点击,INSTALL/REMOVE下载所需要的固件库 选中对应固件库,点击Install即可 Clion(2023.3.1) 略 …