Pytorch从零开始实战15

Pytorch从零开始实战——ResNeXt-50算法实战

本系列来源于365天深度学习训练营

原作者K同学

文章目录

  • Pytorch从零开始实战——ResNeXt-50算法实战
    • 环境准备
    • 数据集
    • 模型选择
    • 开始训练
    • 可视化
    • 总结

环境准备

本文基于Jupyter notebook,使用Python3.8,Pytorch2.0.1+cu118,torchvision0.15.2,需读者自行配置好环境且有一些深度学习理论基础。本次实验的目的是了解并使用ResNeXt-50模型。
第一步,导入常用包

import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torchvision
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torch.nn.functional as F
import random
from time import time
import numpy as np
import pandas as pd
import datetime
import gc
import os
import copy
import warnings
os.environ['KMP_DUPLICATE_LIB_OK']='True'  # 用于避免jupyter环境突然关闭
torch.backends.cudnn.benchmark=True  # 用于加速GPU运算的代码

设置随机数种子

torch.manual_seed(428)
torch.cuda.manual_seed(428)
torch.cuda.manual_seed_all(428)
random.seed(428)
np.random.seed(428)

检查设备对象

torch.manual_seed(428)
torch.cuda.manual_seed(428)
torch.cuda.manual_seed_all(428)
random.seed(428)
np.random.seed(428)

检查设备对象

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device, torch.cuda.device_count() # # (device(type='cuda'), 2)

数据集

本次实验继续使用猴痘病数据集,使用pathlib查看类别,本次类别只有0,1两种类别分别代表患病和不患病。

import pathlib
data_dir = './data/ill/'
data_dir = pathlib.Path(data_dir) # 转成pathlib.Path对象
data_paths = list(data_dir.glob('*')) 
classNames = [str(path).split("/")[2] for path in data_paths]
classNames # ['Monkeypox', 'Others']

使用transforms对数据集进行统一处理,并且根据文件夹名映射对应标签

all_transforms = transforms.Compose([transforms.Resize([224, 224]),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # 标准化
])total_data = datasets.ImageFolder("./data/ill/", transform=all_transforms)
total_data.class_to_idx # {'Monkeypox': 0, 'Others': 1}

随机查看5张图片

def plotsample(data):fig, axs = plt.subplots(1, 5, figsize=(10, 10)) #建立子图for i in range(5):num = random.randint(0, len(data) - 1) #首先选取随机数,随机选取五次#抽取数据中对应的图像对象,make_grid函数可将任意格式的图像的通道数升为3,而不改变图像原始的数据#而展示图像用的imshow函数最常见的输入格式也是3通道npimg = torchvision.utils.make_grid(data[num][0]).numpy()nplabel = data[num][1] #提取标签 #将图像由(3, weight, height)转化为(weight, height, 3),并放入imshow函数中读取axs[i].imshow(np.transpose(npimg, (1, 2, 0))) axs[i].set_title(nplabel) #给每个子图加上标签axs[i].axis("off") #消除每个子图的坐标轴plotsample(total_data)

在这里插入图片描述
根据8比2划分数据集和测试集,并且利用DataLoader划分批次和随机打乱

train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_ds, test_ds = torch.utils.data.random_split(total_data, [train_size, test_size])batch_size = 32
train_dl = torch.utils.data.DataLoader(train_ds,batch_size=batch_size,shuffle=True,)
test_dl = torch.utils.data.DataLoader(test_ds,batch_size=batch_size,shuffle=True,)len(train_dl.dataset), len(test_dl.dataset) # (1713, 429)

模型选择

ResNeXt是由何凯明团队在2017年CVPR会议上提出来的新型图像分类网络。ResNeXt是ResNet的升级版,在ResNet的基础上,引入了cardinality的概念。该概念用于控制模型的宽度,以提高模型的表达能力。主要的创新点是在基本的残差块结构中引入了多个相互独立的分支,这些分支的数量由 cardinality 参数控制。每个分支都有自己的权重,允许网络以更多的角度观察输入数据,从而提高特征提取的多样性。本质其实是分组卷积处理。
在这里插入图片描述
BasicBlock 是 ResNet 中的基本块,用于构建浅层次的网络。它包含两个卷积层,每个卷积层后面都有 Batch Normalization 和 ReLU 激活函数。在残差连接中,如果输入和输出的通道数或空间大小不一致,会使用 downsample 函数进行下采样,以保持一致性。expansion 变量表示块内部的维度倍增系数,用于调整残差块中卷积核的通道数。

class BasicBlock(nn.Module):expansion = 1def __init__(self, in_channel, out_channel, stride=1, downsample=None, **kwargs):super(BasicBlock, self).__init__()self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=out_channel,kernel_size=3, stride=stride, padding=1, bias=False)self.bn1 = nn.BatchNorm2d(out_channel)self.relu = nn.ReLU()self.conv2 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel,kernel_size=3, stride=1, padding=1, bias=False)self.bn2 = nn.BatchNorm2d(out_channel)self.downsample = downsampledef forward(self, x):identity = xif self.downsample is not None:identity = self.downsample(x)out = self.conv1(x)out = self.bn1(out)out = self.relu(out)out = self.conv2(out)out = self.bn2(out)out += identityout = self.relu(out)return out

Bottleneck 类是 ResNet 中的瓶颈块,用于构建深层次的网络。它包含三个卷积层,分别用于降维、3x3 卷积以及升维。与 BasicBlock 不同,Bottleneck 使用 1x1 卷积降维和升维,以减小计算复杂度。expansion 变量表示块内部的维度倍增系数,用于调整残差块中卷积核的通道数。

class Bottleneck(nn.Module):expansion = 4def __init__(self, in_channel, out_channel, stride=1, downsample=None,groups=1, width_per_group=64):super(Bottleneck, self).__init__()width = int(out_channel * (width_per_group / 64.)) * groupsself.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=width,kernel_size=1, stride=1, bias=False)  self.bn1 = nn.BatchNorm2d(width)self.conv2 = nn.Conv2d(in_channels=width, out_channels=width, groups=groups,kernel_size=3, stride=stride, bias=False, padding=1)self.bn2 = nn.BatchNorm2d(width)self.conv3 = nn.Conv2d(in_channels=width, out_channels=out_channel*self.expansion,kernel_size=1, stride=1, bias=False)  self.bn3 = nn.BatchNorm2d(out_channel*self.expansion)self.relu = nn.ReLU(inplace=True)self.downsample = downsampledef forward(self, x):identity = xif self.downsample is not None:identity = self.downsample(x)out = self.conv1(x)out = self.bn1(out)out = self.relu(out)out = self.conv2(out)out = self.bn2(out)out = self.relu(out)out = self.conv3(out)out = self.bn3(out)out += identityout = self.relu(out)return out

ResNet 类是整个模型的主体,由多个 block 组成。初始化时,它包括卷积层、Batch Normalization、ReLU 激活函数以及四个layer。_make_layer 方法用于构建每个阶段中的多个块,根据每个残差块的数量 block_num 和指定的残差块类型 block,它会堆叠多个相同类型的残差块,最终将这些块串联在一起。

class ResNet(nn.Module):def __init__(self,block,blocks_num,num_classes=1000,include_top=True,groups=1,width_per_group=64):super(ResNet, self).__init__()self.include_top = include_topself.in_channel = 64self.groups = groupsself.width_per_group = width_per_groupself.conv1 = nn.Conv2d(3, self.in_channel, kernel_size=7, stride=2,padding=3, bias=False)self.bn1 = nn.BatchNorm2d(self.in_channel)self.relu = nn.ReLU(inplace=True)self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)self.layer1 = self._make_layer(block, 64, blocks_num[0])self.layer2 = self._make_layer(block, 128, blocks_num[1], stride=2)self.layer3 = self._make_layer(block, 256, blocks_num[2], stride=2)self.layer4 = self._make_layer(block, 512, blocks_num[3], stride=2)if self.include_top:self.avgpool = nn.AdaptiveAvgPool2d((1, 1))  # output size = (1, 1)self.fc = nn.Linear(512 * block.expansion, num_classes)for m in self.modules():if isinstance(m, nn.Conv2d):nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')def _make_layer(self, block, channel, block_num, stride=1):downsample = Noneif stride != 1 or self.in_channel != channel * block.expansion:downsample = nn.Sequential(nn.Conv2d(self.in_channel, channel * block.expansion, kernel_size=1, stride=stride, bias=False),nn.BatchNorm2d(channel * block.expansion))layers = []layers.append(block(self.in_channel,channel,downsample=downsample,stride=stride,groups=self.groups,width_per_group=self.width_per_group))self.in_channel = channel * block.expansionfor _ in range(1, block_num):layers.append(block(self.in_channel,channel,groups=self.groups,width_per_group=self.width_per_group))return nn.Sequential(*layers)def forward(self, x):x = self.conv1(x)x = self.bn1(x)x = self.relu(x)x = self.maxpool(x)x = self.layer1(x)x = self.layer2(x)x = self.layer3(x)x = self.layer4(x)if self.include_top:x = self.avgpool(x)x = torch.flatten(x, 1)x = self.fc(x)return x

定义resnext50_32x4d,“32x4d” 的意义是每个残差块内有 32 个分支,每个分支内有 4 个通道。

def resnext50_32x4d(num_classes=2, include_top=True):groups = 32width_per_group = 4return ResNet(Bottleneck, [3, 4, 6, 3],num_classes=num_classes,include_top=include_top,groups=groups,width_per_group=width_per_group)

使用summary查看模型。

from torchsummary import summary
model = resnext50_32x4d().to(device)
summary(model, input_size=(3, 224, 224))

在这里插入图片描述

开始训练

定义训练函数

def train(dataloader, model, loss_fn, opt):size = len(dataloader.dataset)num_batches = len(dataloader)train_acc, train_loss = 0, 0for X, y in dataloader:X, y = X.to(device), y.to(device)pred = model(X)loss = loss_fn(pred, y)opt.zero_grad()loss.backward()opt.step()train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()train_loss += loss.item()train_acc /= sizetrain_loss /= num_batchesreturn train_acc, train_loss

定义测试函数

def test(dataloader, model, loss_fn):size = len(dataloader.dataset)num_batches = len(dataloader)test_acc, test_loss = 0, 0with torch.no_grad():for X, y in dataloader:X, y = X.to(device), y.to(device)pred = model(X)loss = loss_fn(pred, y)test_acc += (pred.argmax(1) == y).type(torch.float).sum().item()test_loss += loss.item()test_acc /= sizetest_loss /= num_batchesreturn test_acc, test_loss

定义学习率、损失函数、优化算法

loss_fn = nn.CrossEntropyLoss()
learn_rate = 0.0001
opt = torch.optim.Adam(model.parameters(), lr=learn_rate)

开始训练,epoch设置为30

import time
epochs = 30
train_loss = []
train_acc = []
test_loss = []
test_acc = []T1 = time.time()best_acc = 0
best_model = 0for epoch in range(epochs):model.train()epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)model.eval() # 确保模型不会进行训练操作epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)if epoch_test_acc > best_acc:best_acc = epoch_test_accbest_model = copy.deepcopy(model)train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)print("epoch:%d, train_acc:%.1f%%, train_loss:%.3f, test_acc:%.1f%%, test_loss:%.3f"% (epoch + 1, epoch_train_acc * 100, epoch_train_loss, epoch_test_acc * 100, epoch_test_loss))T2 = time.time()
print('程序运行时间:%s秒' % (T2 - T1))PATH = './best_model.pth'  # 保存的参数文件名
if best_model is not None:torch.save(best_model.state_dict(), PATH)print('保存最佳模型')
print("Done")

在这里插入图片描述

可视化

可视化训练过程与测试过程

import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率epochs_range = range(epochs)plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述

总结

ResNeXt 使用多个分支(cardinality)来学习特征,每个分支都是一个小型的卷积网络。分支的输出在通道维度上进行拼接,增加了模型的宽度,提高了特征的丰富性。通过增加模型的宽度而不是深度,ResNeXt 在一定程度上提高了模型性能,同时减少了参数量和计算复杂度。通过学习它的设计理念可能会启发我们后续工作。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/322298.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

智能穿戴时代 | 米客方德SD NAND的崭新优势

SD NAND在智能穿戴上的优势 SD NAND是一种可以直接焊接在智能穿戴设备主板上的存储芯片,其小型化设计有助于紧凑设备尺寸,同时提供可靠的嵌入式存储解决方案。 这种集成设计减少了空间占用,同时确保设备在高度活动的环境中更为稳定。SD NAND…

漏洞复现--天融信TOPSEC两处远程命令执行

免责声明: 文章中涉及的漏洞均已修复,敏感信息均已做打码处理,文章仅做经验分享用途,切勿当真,未授权的攻击属于非法行为!文章中敏感信息均已做多层打马处理。传播、利用本文章所提供的信息而造成的任何直…

EasyRecovery2024永久免费版电脑数据恢复软件

EasyRecovery是一款操作安全、价格便宜、用户自主操作的非破坏性的只读应用程序,它不会往源驱上写任何东西,也不会对源驱做任何改变。它支持从各种各样的存储介质恢复删除或者丢失的文件,其支持的媒体介质包括:硬盘驱动器、光驱、…

Linux第7步_设置虚拟机的电源

设置ubuntu代码下载源和关闭“自动检查更新”后,就要学习设置“虚拟机的电源”了。 用处不大,主要是了解”螺丝刀和扳手形状的图标“在哪里。 1、打开虚拟机,点击最右边的“下拉按钮”,弹出对话框,得到下图&#xff…

Electron介绍

前言 相信很多的前端小伙伴都想过一个问题,web技术是否可以用于开发桌面应用。答案当然是可以的,Electron框架就是其中的一种解决方案。 Electron介绍 Electron是一个使用 JavaScript、HTML 和 CSS 构建桌面应用程序的框架。 Electron 并不是一门新的…

丰田凯美瑞雾灯改双光透镜解决方案

丰田凯美瑞大灯采用CAN总线控制车灯的近光、远光、日行灯、转向灯信号,无法直接从车灯插头上直接获取近光远光信号。传统改灯需要拆开车灯通过光耦线阻取得近远光开光信号,工序繁琐且不美观。 厦门市创宇致诚电子科技推出一款丰田凯美瑞车灯信号解码器&a…

15 Linux 按键

一、Linux 按键驱动原理 其实案件驱动和 LED 驱动很相似,只不过区别在于,一个是读取GPIO高低电平,一个是从GPIO输出高低电平。 在驱动程序中使用一个整形变量来表示按键值,应用程序通过 read 函数来读取按键值,判断按键…

JVM之对象创建

对象创建的流程 1.类加载检查 虚拟机遇到一条new指令时,首先将去检查这个指令的参数是否能在常量池中定位到一个类的符号引用,并且检查这个符号引用代表的类是否已被加载、解析和初始化过。如果没有,那必须先执行相应的类加载过程。new指令对…

table的最后一行需要加底色

<tr class"font12" v-for"(item, index) in OrderAuditDiscountList.list" :key"index":class"OrderAuditDiscountList.list.length - 1 index ? blodfont : "> 其中&#xff1a; :class"OrderAuditDiscountList.list.le…

tolist()读取Excel列数据,(Excel列数据去重后,重新保存到新的Excel里)

从Excel列数据去重后&#xff0c;重新保存到新的Excel里 import pandas as pd# 读取Excel文件 file r"D:\\pythonXangmu\\quchong\\quchong.xlsx" # 使用原始字符串以避免转义字符 df pd.read_excel(file, sheet_namenameSheet)# 删除重复值 df2 df.drop_duplica…

【Python案例实战】水质安全分析及建模预测

一、引言 1.水资源的重要性 水是生命之源,是人类生存和发展的基础。它是生态系统中不可或缺的组成部分,对于维系地球上的生命、农业、工业、城市发展等方面都具有至关重要的作用。 2.水质安全与人类健康的关系 水质安全直接关系到人类的健康和生存。水中的污染物和有害物…

Stable Diffusion汉化插件

今天为大家介绍Stable Diffusion的两种UI汉化包&#xff0c;一种是汉化包&#xff0c;就中文界面&#xff0c;方便大家对于繁杂的参数的模型的操作&#xff0c;一种是中英文对照界面&#xff0c;在中文提示下&#xff0c;同时显示英文&#xff0c;不但方便设置也同时学习了英文…