零知识证明(zk-SNARK)- groth16(一)

全称为 Zero-Knowledge Succinct Non-Interactive Argument of Knowledge,简洁非交互式零知识证明,简洁性使得运行该协议时,即便 statement 非常大,它的 proof 大小也仅有几百个bytes,并且验证一个 proof 的时间可以达到毫秒级别。
这是一个通用的零知识证明协议,可以用作各种证明,如范围证明。
核心方法是通过R1CS,QAP等方法将计算难题变为多项式,将计算结果正确性巧妙转化为了多项式的有特殊解的问题,生成对应proof,然后再运用多项式证明方法,来完成证明与验证。

Non-Interactive Argument of Knowledge of a Polynomial

(注意 计算和参数选取是在域内,即有模运算)

一般多项式的证明

场景如下:Verifier 有一个多项式 f ( x ) f(x) f(x),Prover 向 Verifer 证明他知道这一个多项式。
假设 Prover 知道的多项式为 p ( x ) p(x) p(x),那么现在要证明的就是 f ( x ) = p ( x ) f(x)=p(x) f(x)=p(x),如果这两个多项式的阶数最高为 d d d,那么两个多项式代表的曲线将最多有 d d d个交点,当 Verifier 随机在一个很大的范围内取一个值 s s s的时候,那么 s s s d d d相同的概率会非常低,所以有以下协议

  • Verifier 在大范围里随机选择一个值 s s s,并且在本地计算 f ( s ) f(s) f(s),然后把 s s s发送给 Prover
  • Prover 计算 p ( s ) p(s) p(s),然后发送给Verifier
  • Verifier 验证 f ( s ) = ? p ( s ) f(s)\overset{?}=p(s) f(s)=?p(s)

证明多项式的根

有些多项式是可以分解多个多项式的乘积的,如假设 p ( x ) = ( x − a ) ( x − b ) ( x − c ) p(x)=(x-a)(x-b)(x-c) p(x)=(xa)(xb)(xc)那么
假设 Prover 有一个多项式 p ( x ) p(x) p(x),现在他想证明他的多项式持有一部分根(部分多项式),也就是证明他的多项式 p ( x ) = t ( x ) h ( x ) p(x)=t(x)h(x) p(x)=t(x)h(x)中包含 t ( x ) t(x) t(x)假设为 ( x − a ) ( x − b ) (x-a)(x-b) (xa)(xb),而此时的 t ( x ) t(x) t(x)称为目标多项式,是公开的,要注意 Prover 是不能透露原多项式的。那么有以下协议

  • Verifier 在大范围内随机取值 s s s,计算 t = t ( s ) t= t(s) t=t(s),然后将 s s s发送给 Prover
  • Proer 计算 h ( x ) = p ( x ) t ( x ) h( x) = \frac {p(x)}{t(x)} h(x)=t(x)p(x), h ( s ) h(s) h(s), p ( s ) p(s) p(s),然后发送后两个给 Verifier
  • Verfier 验证 p ( s ) = ? t ( s ) h ( s ) p(s)\overset{?}=t(s)h(s) p(s)=?t(s)h(s)

显而易见以上变量都局限为整数,如果 p p p确实能够整除 t t t,那么等式一定是成立的,如果不能,那么式子将存在余式,有极大的概率不是整数。
当然此协议仍然有很大漏洞,比如 Prover 可能完全不知道 p ( x ) p(x) p(x),但知道公开的 t ( x ) t(x) t(x),所以可以完全捏造出 h ( x ) h(x) h(x)满足条件。

同态加密

显然我们不能在协议里进行明文的传输,但又需要密文的计算,所以需要一个满足加密和计算两种特性的算法。
同态加密算法 E ( x ) E(x) E(x),如 E ( a x + b y ) = g a x + b y = g a x ⋅ g b y = ( g x ) a ⋅ ( g y ) b = E ( x ) a ⋅ E ( y ) b . E(a x+b y)=g^{a x+b y}=g^{a x} \cdot g^{b y}=\left(g^{x}\right)^{a} \cdot\left(g^{y}\right)^{b}=E(x)^{a} \cdot E(y)^{b} . E(ax+by)=gax+by=gaxgby=(gx)a(gy)b=E(x)aE(y)b. g g g是生成元),这里基于离散对数难题和 CDH 假设(即给定 g a , g b g^a,g^b ga,gb,得到 g a b g^{ab} gab很困难)。显然这是仅仅满足同态加法的同态加密,不支持密文相乘。
那么该算法不支持乘法,仅有一个 s s s的情况下,该怎么同态计算多项式呢?显然是不行的,于是想办法把同态乘法转变为同态加法,注意到,多项式 P ( x ) P(x) P(x)可以看作是一组系数和未知数的线性结合,也就是计算出 s s s的各个幂次,这需要固定好多项式的阶数 d d d,相当于限制了多项式的阶数,这样提前计算出 s 1 , … , s d s^1,\dots,s^d s1,,sd,然后计算出多项式的每个部分相加即可。
具体使用如下,

  1. Verifier 在大范围里随机选择一个 s s s,先计算好 s s s的幂次 s 1 , … , s d s^1,\dots,s^d s1,,sd,接着计算 t ( s ) t(s) t(s),最后 E ( 1 ) , E ( s ) , … , E ( s d ) E(1),E(s),\dots,E(s^d) E(1),E(s),,E(sd)并发给 Prover
  2. Prover 收到数据后计算, h ( x ) = p ( x ) t ( x ) h( x) = \frac {p(x)}{t(x)} h(x)=t(x)p(x),然后配合多项式的系数计算 E ( p ( s ) ) E(p(s)) E(p(s)) E ( h ( s ) ) E(h(s)) E(h(s))并发送给Verifier
  3. Verifier 进行验证 E ( p ( s ) ) = ? E ( t ( s ) ) E ( h ( s ) ) E(p(s))\overset{?}=E(t(s))E(h(s)) E(p(s))=?E(t(s))E(h(s)),即 g p ( s ) = ( g h ( s ) ) t ( s ) g^{p(s)} = (g^{h(s)})^{t(s)} gp(s)=(gh(s))t(s)

** KCA(The Knowledge of Coefficient Test and Assumption)**

上面的协议的还是有很大漏洞,比如 Prover 在计算多项式的时候,没有采用多项式的格式(常数系数和未知数的线性组合),而是使用了另外的方法,算法找到一个满足 z p = ( z h ) t ( s ) z_p = (z_h)^{t(s)} zp=(zh)t(s)的两个值 z p , z h z_p,z_h zp,zh去替代掉 g p ( s ) , g h ( s ) g^{p(s)},g^{h(s)} gp(s),gh(s),也就是根本没用多项式,直接仿造了满足条件的结果。
这里就需要对 Prover 进行限制,让他必须使用满足条件的多项式,限定为常数,也限定了指数,不能随意改变指数。所以KCA也可以叫做KEA(Knowledge of exponent)
思路如下,
定义一对元素 ( a , b = α ⋅ a ) (a,b = \alpha \cdot a) (a,b=αa)(称为一个 α \alpha α-对), α ⋅ a \alpha \cdot a αa表示 α \alpha α a a a相加,也就是 a α a^\alpha aα,那么一个KC流程如下具体如下,

  1. 首先Verifier会随机选择一个非零的 α \alpha α,计算 b = α ⋅ a b = \alpha \cdot a b=αa,定义这是一个 α − s h i f t \alpha -shift αshift
  2. Verifier 发送这个 challenge pair ( a , b ) (a,b) (a,b)给 Prover。
  3. 这时候 Prover 会 respond 一对不一样,但具有相同性质的 pair ( a ′ , b ′ ) (a',b') (a,b),它应当是 α − s h i f t \alpha -shift αshift
  4. 如果收到的是一个 α − s h i f t \alpha -shift αshift,那么Verifier 接受这个response

注意,这是满足DL问题的, Prover 是很难找到一个 α \alpha α,那么她该如何构造新的 α − s h i f t \alpha -shift αshift呢?一个显而易见的方式是,Prover 选择一个常数系数 γ \gamma γ,直接构造 ( a ′ , b ′ ) = γ ( a , b ) (a',b') = \gamma(a,b) (a,b)=γ(a,b)
假设 Verifier 发送的不是一个,而是是 d d d α − s h i f t \alpha -shift αshift,那么 Prover 也将选择一组系数 c 1 , … , c d c_1,\dots,c_d c1,,cd,respond 一个
( a ′ , b ′ ) = ( ∑ i = 1 d c i a i , ∑ i = 1 d c i b i ) (a',b') = (\sum_{i=1}^d c_ia_i,\sum_{i=1}^d c_ib_i) (a,b)=(i=1dciai,i=1dcibi),显然该对也是满足 α − s h i f t \alpha -shift αshift。如果把 Verifier 发的内容优化一下,就构成了KCA。

Blind Evaluation of Polynomials Verifiable Protocol

完整的多项式盲验证协议。
解决整个问题需要满足的两个性质:

  • **Blindness:**也就是 Prover 不能获取到 s s s,同样 Verifier 也不能拿到 p ( x ) p(x) p(x)(同态)。
  • **Verifiability:**也就是得确保 Prover 发的 E ( p ( x ) ) E(p(x)) E(p(x))确实是用某个多项式 p ( x ) p(x) p(x)计算的,而不是完全不相关的数据(KCA)

那么使用KCA对前面协议进行优化如下,

  1. Verifier 随机选择 α \alpha α(非0)和 s s s,然后计算 t ( s ) t(s) t(s),接着构造 α − s h i f t \alpha -shift αshift ( g , g α ) , ( g s , g α ⋅ s ) , … , ( g s d , g α ⋅ s d ) (g,g^{\alpha}),(g^s,g^{\alpha \cdot s} ),\dots,(g^{s^d},g^{\alpha \cdot s^d}) (g,gα),(gs,gαs),,(gsd,gαsd)
  2. Prover 则使用多项式 p ( x ) p(x) p(x)的系数 c 1 , … , c d c_1,\dots,c_d c1,,cd,然后计算 E ( h ( s ) ) E(h(s)) E(h(s))以及 ( E ( p ( s ) ) , E ( α p ( s ) ) ) = ( g ∑ i = 1 d c i s i , g ∑ i = 1 d c i α ⋅ s d ) (E(p(s)),E(\alpha p(s))) = (g^{\sum_{i=1}^d c_is^i},g^{\sum_{i=1}^d c_i\alpha \cdot s^d}) (E(p(s)),E(αp(s)))=(gi=1dcisi,gi=1dciαsd),发送给Verifier
  3. Verifier进行验证 E ( p ( s ) ) = ? E ( α p ( s ) ) E(p(s))\overset ?=E(\alpha p(s)) E(p(s))=?E(αp(s)) E ( p ( s ) ) = ? E ( t ( s ) ) E ( h ( s ) ) E(p(s))\overset{?}=E(t(s))E(h(s)) E(p(s))=?E(t(s))E(h(s))即可

该方案也可以解决前面的问题,即Prover 不能随意构造满足类似 z p = ( z h ) t ( s ) z_p = (z_h)^{t(s)} zp=(zh)t(s) h ( s ) h(s) h(s),这样会很容易不满足 α − s h i f t \alpha -shift αshift的限制条件。

Parings and bilinear map

前面的协议基本实现了诚实两方之间的交互方案,相关的 proof 仅仅在两方之间有效,无法重复使用,但在实际运用中,存在这恶意的多方的情况,这显然不符合实际。所以,需要让一些秘密参数变得可重复使用甚至公开,而且足够可信以防止滥用。
首先考虑将 Verifier 生成的 ( t ( s ) , α ) (t(s),\alpha) (t(s),α)进行加密保护,防止泄露。如果采用前面的同态加密,那么在后面的乘法计算中就会涉及到同态的乘法 ,但是前面用的同态算法不支持同态乘法。那么必须用到类似乘法的时候应该怎么办呢?这时候就引入了椭圆双曲线映射。
Parings 是能够将一个集合里的两个加密输入确定性的映射到另一个集合里的一个输出的一种乘法表示函数。
即: e : G × G → G T e: \mathbb{G} \times \mathbb{G} \rightarrow \mathbb{G}_T e:G×GGT满足以下性质
e ( g 1 a , g 2 b ) = e ( g 1 , g 2 ) a b = e ( g 1 a b , g 2 ) = e ( g 1 , g 2 a b ) \begin{aligned}e(\mathrm{g_1^a,g_2^b})&=\mathrm{e(g_1,g_2)^{ab}=e(g_1^{ab},g_2)=e(g_1,g_2^{ab})}\end{aligned} e(g1a,g2b)=e(g1,g2)ab=e(g1ab,g2)=e(g1,g2ab)
e ( g 1 a , g 2 b ) e ( g 1 c , g 2 d ) = e ( g 1 , g 2 ) a b + c d \begin{aligned} e(\mathrm{g_1^a,g_2^b})e(\mathrm{g_1^c,g_2^d})&=\mathrm{e(g_1,g_2)^{ab+cd}}\end{aligned} e(g1a,g2b)e(g1c,g2d)=e(g1,g2)ab+cd
其意义在于,将某个群中的一对元素映射到一个新的群,当且仅当两个原像对应指数的积相同其像也相同。并且,该函数要求是可计算的(即不需要用暴力搜索等方式),它能够验证一对(加密后的)数据的乘积是否和另一对相同(虽然算不出这个乘积)
接下来将协议的计算放到满足Parings的椭圆曲线群上来。

Multiple Parties Composite Common Reference String

首先引入一个可信的第三方来随机生成 s s s α \alpha α,并且计算出CRS(Common Reference String),共证明和验证两部分,都是公开的( i ∈ { 0 , … , d } i \in \{0,\dots,d\} i{0,,d}),接着需要删除掉 s s s α \alpha α

  • Proving Key: E ( s i ) , E ( α s i ) = g s i , g α s i E(s^i),E(\alpha s^i) = g^{s^i},g^{\alpha s^i} E(si),E(αsi)=gsi,gαsi
  • Verification Key: E ( t ( s ) ) , E ( α ) = g t ( s ) , g α E(t(s)),E(\alpha) = g^{t(s)},g^{\alpha} E(t(s)),E(α)=gt(s),gα

接着基于CRS,让 Prover 和 Verifier 仅仅通过CRS就能完成协议。继续优化协议如下,(下面简化 p = p ( s ) , t , h p=p(s),t,h p=p(s),t,h也类似)

  • 对于 Prover 来说,公开的CRS中已经包含了第一步的内容,接下来是利用 Proving Key 来计算出 E ( h ( s ) ) E(h(s)) E(h(s)) ( E ( p ( s ) ) , E ( α p ( s ) ) ) (E(p(s)),E(\alpha p(s))) (E(p(s)),E(αp(s)))
  • 对于Verifier来说,是利用CRS中的 Verfication来进行验证( p ′ = α p p' = \alpha p p=αp
    • 首先验证 p = t ⋅ h p=t \cdot h p=th,即 e ( g p , g 1 ) = e ( g t , g h ) = e ( g , g ) p = e ( g , g ) t ⋅ h e(g^p,g^1) = e(g^t,g^h) = e(g,g)^p = e(g,g)^{t \cdot h} e(gp,g1)=e(gt,gh)=e(g,g)p=e(g,g)th
    • 然后验证 α − s h i f t \alpha -shift αshift,即 e ( g p , g α ) = e ( g p ′ , g ) e(g^p,g^\alpha) = e(g^{p'},g) e(gp,gα)=e(gp,g)

注意:这里也暴露出两个问题,

  1. Proving Key 中的 E ( α ) E(\alpha) E(α)是公开的,也就是对于 Prover 来说 ,他是可以打破多项式的限制条件的。
  2. 引入了一个可信第三方,但更复杂的现实中不能保证第三方不存在恶意,比如不销毁 trusted setup 的随机秘密,这一旦暴露会导致任何人都可以伪造证明。

于是 ZKSNARK 引入了多方联合的setup,每个人用自己的私钥 ( α , s ) (\alpha,s) (α,s)和前一个人生成的 CRS 作为输入生成一个新的 CRS,只要保证有一个人销毁了私钥,就能保证最终的CRS是安全的。具体实现如下,
假设有三方 Alice,Bob,Carol 参与,仅需要使用同态乘法让每个人的私钥相加即可
image.png
同理参与方 Carol 公开后也可以进行验证。

完整的简短非交互式的多项式证明方案

这里用 { g s i } i ∈ [ d ] \{g^{s^i}\}_{i\in[d]} {gsi}i[d]代表 s 1 , … , s d s^1,\dots,s^d s1,,sd
首先确定好目标多项式 t ( x ) t(x) t(x)和 prover 的多项式的阶数 d d d,prover 需要证明他持有的多项式里含有 t ( x ) t(x) t(x)
具体如下
image.png

参考

浅谈零知识证明:背景与起源
zcash官方科普
Exploring Elliptic Curve Pairings
Quadratic Arithmetic Programs: from Zero to Hero
Why and how zk-SNARK works
ZKSNARK介绍
李威翰,张宗洋,周子博等.简洁非交互零知识证明综述[J].密码学报,2022,9(03):379-447.DOI:10.13868/j.cnki.jcr.000525.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/323015.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

代码随想录刷题第三十六天| 435. 无重叠区间 ● 763.划分字母区间 ● 56. 合并区间

代码随想录刷题第三十六天 无重叠区间 (LC 435) 题目思路: 代码实现: class Solution:def eraseOverlapIntervals(self, intervals: List[List[int]]) -> int:intervals.sort(keylambda x: (x[0],x[1]))count 0right intervals[0][1]for i in ra…

互联网加竞赛 基于CNN实现谣言检测 - python 深度学习 机器学习

文章目录 1 前言1.1 背景 2 数据集3 实现过程4 CNN网络实现5 模型训练部分6 模型评估7 预测结果8 最后 1 前言 🔥 优质竞赛项目系列,今天要分享的是 基于CNN实现谣言检测 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐&am…

JumpServer3.0版本-账号管理

账号列表 我这里已经创建好了所以有很多,可以点击资产树列表分类查看 点击创建按钮,添加账号 资产:如果多个设备的账号密码一致可以在资产同事选中 名称:方便辨识即可 用户名:登录设备的账户名 密码:按你登录需求自行选择 添加按钮旁边还有个“模版添加” 此功能便…

海外直邮革命:跨境电商的全球化销售策略

在数字化时代,跨境电商正经历着一场革命,而海外直邮成为这场变革的引领者。全球范围内,越来越多的企业通过直邮方式销售商品,打破了地域限制,实现了商品的全球化流通。本文将深入探讨海外直邮的崛起,以及跨…

基于Java SSM框架实现游戏论坛平台系统项目【项目源码+论文说明】计算机毕业设计

基于java的SSM框架实现游戏论坛平台系统演示 摘要 本论文主要论述了如何使用java语言开发一个游戏论坛平台的设计,本系统将严格按照软件开发流程进行各个阶段的工作,采用B/S架构、ssm 框架和 java 开发的 Web 框架,基于Werkzeug WSGI工具箱和…

如何用自助法或刀切法来估计偏差、方差?

自助法和刀切法(也叫水手刀法)为计算标准误差和置信区间的非参数方法。刀切法耗费较少计算机资源,但自助法有某些统计优势。 1. 刀切法 由Quenouille(1949)提出的刀切法是用来对估计的偏差和方差进行近似的一个简单方法。 符号说明&#x…

企业数据治理的三个阶段:从起步到成熟的数据管理之旅

随着数字化时代的到来,企业数据已经成为企业的重要资产和驱动业务发展的重要力量。然而,要想充分利用数据的价值,企业需要对其数据进行有效的管理和治理。本文将对企业数据治理的三个阶段进行详细的探讨,以帮助企业了解其在数据治…

基于springboot精品水果线上销售网站设计与实现

🍅点赞收藏关注 → 私信领取本源代码、数据库🍅 本人在Java毕业设计领域有多年的经验,陆续会更新更多优质的Java实战项目希望你能有所收获,少走一些弯路。🍅关注我不迷路🍅一 、设计说明 1.1 研究背景 互…

从零学Java - 面向对象 Static

面向对象 Static 文章目录 面向对象 Static1.什么是静态?2.Static的作用2.1 属性2.1.1 实例属性2.1.2 静态属性 2.2 方法2.2.1 静态方法 2.3 代码块2.3.1 局部代码块2.3.2 动态代码块2.3.3 静态代码块 2.4 静态导入 3.类加载3.1 什么是类加载?3.2 触发类加载的5种情况3.3 类加…

8K超高清应用:输电线网智慧巡检提升巡视效率

电力安全关系国计民生,是国家安全的重要保障,因此确保电力线路系统的安全运行至关重要。电力线路系统整体分为三大板块:输电线路、变电站和配电线路。然而,由于自然灾害、人为破坏等因素影响,这三大板块的设备很容易发…

【mujoco】Ubuntu20.04中解决mujoco报错raise error.MujocoDependencyError

【mujoco】Ubuntu20.04中解决mujoco报错raise error.MujocoDependencyError 文章目录 【mujoco】Ubuntu20.04中解决mujoco报错raise error.MujocoDependencyError1. 报错的具体情况2. 解决过程3. 其他问题3.1 ModuleNotFoundError: No module named OpenGL3.2 ModuleNotFoundEr…

【kettle】pdi/data-integration 打开ktr文件报错“Unable to load step info from XML“

一、报错内容: Unable to load step info from XML step nodeorg.pentaho.di.core.exception.KettleXMLException: Unable to load step info from XMLat org.pentaho.commons.launcher.Launcher.main (Launcher.java:92)at java.lang.reflect.Method.invoke (Met…