基于帝国主义竞争算法优化的Elman神经网络数据预测 - 附代码

基于帝国主义竞争算法优化的Elman神经网络数据预测 - 附代码

文章目录

  • 基于帝国主义竞争算法优化的Elman神经网络数据预测 - 附代码
    • 1.Elman 神经网络结构
    • 2.Elman 神经用络学习过程
    • 3.电力负荷预测概述
      • 3.1 模型建立
    • 4.基于帝国主义竞争优化的Elman网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对Elman神经网络,初始权值阈值盲目随机性的缺点。采用帝国主义竞争算法对ELman的阈值和权值进行优化。利用电力负荷预测模型进行测试,结果表明改进后的神经网络预测性能更佳。

1.Elman 神经网络结构

Elman 型神经网络一般分为四层:输入层、隐含层(中间层)、承接层和输出层 。 如图 1所示。输入层、隐含层、输出层的连接类似于前馈式网络 ,输入层的单元仅起信号传输作用,输出层单元起线性加权作用。隐含层单元的传递函数可采用线性或非线性函数,承接层又称上 下文层或状态层,它用来记忆隐含层单元前一时刻的输出值并返回给网络的输入 , 可以认为是 一个一步延时算子。

Elman 神经网络的特点是隐含层的输出通过承接层的延迟与存储,自联到隐含层的输入。 这种自联方式使其对历史状态的数据具有敏感性,内部反馈网络的加入增强了网络本身处理动态信息的能力 ,从而达到动态建模的目的。此外, Elman 神经网络能够以任意精度逼近任意非线性映射,可以不考虑外部噪声对系统影响的具体形式,如果给出系统的输入输出数据对 , 就可以对系统进行建模 。

在这里插入图片描述

图1.Elman网络结构

2.Elman 神经用络学习过程

以图1为例 , Elman 网络的非线性状态空间表达式为 :
y ( k ) = g ( w 3 x ( k ) ) (1) y(k) = g(w^3x(k)) \tag{1} y(k)=g(w3x(k))(1)

x ( k ) = f ( w 1 x c ( k ) + w 2 ( u ( k − 1 ) ) ) (2) x(k)=f(w^1x_c(k)+w^2(u(k-1)))\tag{2} x(k)=f(w1xc(k)+w2(u(k1)))(2)

x c ( k ) = x ( k − 1 ) (3) x_c(k)=x(k-1)\tag{3} xc(k)=x(k1)(3)

式中, y y y m m m 维输出结点向量 ; x x x n n n 维中间层结点单元向量; u u u r r r 维输入向量; x c x_c xc n n n 维反馈状态向量; w 3 w^3 w3 为中间层到输出层连接权值; w 2 w^2 w2为输入层到中间层连接权值; w 1 w^1 w1为承接层到中间层的连接权值; g ( ∗ ) g(*) g()为输出神经元的传递函数,是中间层输出的线性组合; f ( ∗ ) f(*) f()为中间层神经元的传递函数,常采用 S S S 函数 。

Elman 神经网络也采用 BP 算法进行权值修正,学习指标函数采用误差平方和函数。
E ( w ) = ∑ k = 1 n ( y k ( w ) − y k ′ ( w ) ) 2 (4) E(w)=\sum_{k=1}^n(y_k(w)-y'_k(w))^2\tag{4} E(w)=k=1n(yk(w)yk(w))2(4)

3.电力负荷预测概述

电力系统由电力网、电力用户共同组成,其任务是给广大用户不间断地提供经济、可靠、符 质量标准的电能,满足各类负荷的需求,为社会发展提供动力。由于电力的生产与使用具有特殊性,即电能难以大量储存,而且各类用户对电力的需求是时刻变化的,这就要求系统发电出力应随时与系统负荷的变化动态平衡,即系统要最大限度地发挥出设备能力,使整个系统保 持稳定且高效地运行,以满足用户的需求 。 否则,就会影响供用电的质量,甚至危及系统的安全 与稳定 。 因此,电力系统负荷预测技术发展了起来,并且是这一切得以顺利进行的前提和基础。负荷预测的核心问题是预测的技术问题,或者说是预测的数学模型。传统的数学模型是用现成的数学表达式加以描述,具有计算量小、速度快的优点,但同时也存在很多的缺陷和局限性,比如不具备自学习、自适应能力、预测系统的鲁棒性没有保障等。特别是随着我国经济 的发展,电力系统的结胸日趋复杂,电力负荷变化的非线性、时变性和不确定性的特点更加明 显,很难建立一个合适的数学模型来清晰地表达负荷 和影响负荷的变量之间的 关系。而基于神经网络的非数学模型预测法,为解决数学模型法的不足提供了新的思路 。

3.1 模型建立

利用人工神经网络对电力系统负荷进行预测,实际上是利用人工神经网络可以以任意精度逼近任一非线性函数的特性及通过学习历史数据建模的优点。而在各种人工神经网络中, 反馈式神经网络又因为其具有输入延迟,进而适合应用于电力系统负荷预测。根据负荷的历史数据,选定反馈神经网络的输入、输出节点,来反映电力系统负荷运行的内在规律,从而达到预测未来时段负荷的目的。因此,用人工神经网络对电力系统负荷进行预测 ,首要的问题是确定神经网络的输入、输出节点,使其能反映电力负荷的运行规律。

一般来说,电力系统的负荷高峰通常出现在每天的 9~ 19 时之间 ,本案对每天上午的逐时负荷进行预测 ,即预测每天 9 ~ 11 时共 3 小时的负荷数据。电力系统负荷数据如下表所列,表中数据为真实数据,已经经过归 一化 。

时间负荷数据负荷数据负荷数据
2008.10.100.12910.48420.7976
2008.10.110.10840.45790.8187
2008.10.120.18280.79770.743
2008.10.130.1220.54680.8048
2008.10.140.1130.36360.814
2008.10.150.17190.60110.754
2008.10.160.12370.44250.8031
2008.10.170.17210.61520.7626
2008.10.180.14320.58450.7942

利用前 8 天的数据作为网络的训练样本,每 3 天的负荷作为输入向量,第 4 天的负荷作为目标向量。这样可以得到 5 组训练样本。第 9 天的数据作为网络的测试样本,验证网络能否合理地预测出当天的负荷数据 。

4.基于帝国主义竞争优化的Elman网络

帝国主义竞争算法原理请参考:https://blog.csdn.net/u011835903/article/details/108517210

利用帝国主义竞争算法对Elman网络的初始权值和阈值进行优化。适应度函数设计为测试集的绝对误差和:
f i t n e s s = ∑ i = 1 n ∣ p r e d i c t n − T r u e V a l u e n ∣ (5) fitness = \sum_{i=1}^n|predict_n - TrueValue_n| \tag{5} fitness=i=1npredictnTrueValuen(5)

5.测试结果

帝国主义竞争参数设置如下:

%% 网络相关参数设定
hiddNum = 18;%隐含层个数
R = size(p_train,1);%输入数据每组的维度
Q = size(t_train,1);%输出数据的维度
threshold = [0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1];%每组数据对应维度的最小(0)和最大值(1);%% 帝国主义竞争相关参数设定
%% 定义帝国主义竞争优化参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = hiddNum*R + hiddNum + Q + hiddNum*hiddNum + Q*hiddNum;%维度,即权值与阈值的个数,承接层个数
lb = -5.*ones(1,dim);%下边界
ub = 5.*ones(1,dim);%上边界
fobj = @(x) fun(x,hiddNum,R,Q,threshold,p_train,t_train,p_test,t_test);

在这里插入图片描述
在这里插入图片描述

从结果来看,3个时刻点,帝国主义竞争-Elman均比原始结果Elman好,误差更小。

由于上述数据有限,大家可以用自己的数据进行测试。

6.参考文献

书籍《MATLAB神经网络43个案例分析》

7.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/324323.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

迅腾文化观察:企业在高增长市场的需求侧如何积极占位与占领用户心智

迅腾文化观察:企业在高增长市场的需求侧如何积极占位与占领用户心智 在当今快速发展的市场中,企业面临着巨大的机遇和挑战。如何在高增长市场的需求侧取得优势,成为企业关注的焦点。迅腾文化观察到,企业要想在激烈的市场竞争中脱…

CSS 放大翻转动画

<template><div class="container" @mouseenter="startAnimation" @mouseleave="stopAnimation"><!-- 旋方块 --><div class="box" :class="{ rotate-scale-up-hor: isAnimating }"><!-- 元素内…

flutter学习-day23-使用extended_image处理图片的加载和操作

文章目录 1. 介绍2. 属性介绍3. 使用 1. 介绍 在 Flutter 的开发过程中&#xff0c;经常会遇到图片的显示和加载处理&#xff0c;通常显示一个图片&#xff0c;都有很多细节需要处理&#xff0c;比如图片的加载、缓存、错误处理、图片的压缩、图片的格式转换等&#xff0c;如果…

六、Spring 声明式事务

本章概要 声明式事务概念 编程式事务声明式事务Spring事务管理器 基于注解的声明式事务 准备工作基本事务控制事务属性&#xff1a;只读事务属性&#xff1a;超时时间事务属性&#xff1a;事务异常事务属性&#xff1a;事务隔离级别事务属性&#xff1a;事务传播行为 6.1 声…

癌症早筛2023:翻越大山,仍是漫漫征途

撕开一盒试剂盒&#xff0c;拿出采样工具&#xff0c;在采集测试样本后混入试剂&#xff0c;再用试纸测试自身对某种病原体的感染情况。过去一段时间&#xff0c;这个方式帮助很多人尽早明确了新冠、流感、支原体的感染状况&#xff0c;从而加速对症治疗。 也因此&#xff0c;…

RBAC基于角色的访问控制

一 什么是RBAC 概念 RBAC 是基于角色的访问控制&#xff08;Role-Based Access Control &#xff09;在 RBAC 中&#xff0c;权限与角色相关联&#xff0c;用户通过成为适当角色的成员而得到这些角色的权限。这就极大地简化了权限的管理。这样管理都是层级相互依赖的&#…

全网最全fiddler使用教程和fiddler如何抓包(fiddler手机抓包)-笔者亲测

一、前言 抓包工具有很多&#xff0c;比如常用的抓包工具Httpwatch&#xff0c;通用的强大的抓包工具Wireshark.为什么使用fiddler?原因如下&#xff1a; 1.Wireshark是通用的抓包工具&#xff0c;但是比较庞大&#xff0c;对于只需要抓取http请求的应用来说&#xff0c;似乎…

MySQL-DQL

DQL是数据查询语言&#xff0c;用来查询数据库中表中的数据。 DQL语句编写顺序和执行顺序&#xff1a; 编写顺序&#xff1a;由上至下 执行顺序&#xff1a; 基本查询 1. 查询多个字段&#xff1a;SELECT 字段1,字段2,字段3... FROM 表名; 查询所有字段&#xff1a; SELECT*FR…

南某人:从工厂到品牌的华丽转身!

南某人&#xff0c;这个名字在中国的市场上已经响当当&#xff0c;但你知道吗&#xff1f;这个品牌其实并没有自己的工厂和门店。那么&#xff0c;他们是如何做到年收入高达40亿的呢&#xff1f; 起初&#xff0c;南某人和许多中国品牌一样&#xff0c;从生产保暖内衣起家。然…

es6中import * as导入方式

es6中import * as导入方式 一、问题和解决方法二、简介import * as三、ES6 模块化语法导入导出1.导入2.导出 一、问题和解决方法 问题报错: export ‘default’ (imported as ‘XLSX’) was not found in ‘xlsx’ (possible exports: CFB, SSF, parse_xlscfb, parse_zip, read…

云卷云舒:构建业务型电信智能运维方法

1 引言 智能运维&#xff08;AIOps-Algorithmic IT Operations基于算法的IT运维&#xff09;是人工智能技术在IT运维领域的运用&#xff0c;引用Gartner 的报告的一段话“未来几年&#xff0c;将近50%的企业将会在他们的业务和IT运维方面采用AIOps&#xff0c;远远高于今天的10…

【Java集合篇】HashMap、Hashtable 和 ConcurrentHashMap的区别

HashMap、Hashtable和ConcurrentHashMap的区别 ✔️ 三者区别✔️ 线程安全方面✔️继承关系方面✔️ 允不允许null值方面✔️为什么ConcurrentHashMap不允许null值? ✔️ 默认初始容量和扩容机制✔️遍历方式的内部实现上不同 ✔️ 三者区别 ✔️ 线程安全方面 HashMap是非线…