图像分割-Grabcut法(C#)

版权声明:本文为博主原创文章,转载请在显著位置标明本文出处以及作者网名,未经作者允许不得用于商业目的。

本文的VB版本请访问:图像分割-Grabcut法-CSDN博客

GrabCut是一种基于图像分割的技术,它可以用于将图像中的前景和背景分离。在实现中,GrabCut算法通常需要使用高斯混合模型(GMM)来建立前景和背景的概率分布,以便更好的估计像素的标签。同时,还需要考虑如何处理边界处的像素,以避免边界处的像素被错误地分类。GrabCut算法在图像分割中有着广泛的应用,例如人像分割、物体抠图等。

EmguCV使用CvInvoke.GrabCut方法来执行GrabCut算法,该方法声明如下:

public static void GrabCut(

           IInputArray img,

                    IInputOutputArray mask,

                    Rectangle rect,

                    IInputOutputArray bgdModel,

                    IInputOutputArray fgdModel,

                    int iterCount,

                   GrabcutInitType type

)

参数说明:

  1. img:输入输出的图像,必须是三通道彩色图像。
  2. mask:指定的掩码图像,必须是单通道灰度图像,并且与输入图像具有相同的尺寸。可以传入0-3的值,分别为:0表示明显为背景的像素、1表示冥相位前景的像素、2表示可能为背景的像素、3表示可能为前景的像素。
  3. rect:指定的矩形框,用于定位大概率可能为前景目标的位置。
  4. bgdModel:背景模型,必须是单通道浮点型Mat。
  5. fgdModel:前景模型,必须是单通道浮点型Mat。
  6. iterCount:迭代次数,用于控制算法的收敛性。
  7. type:GrabCut算法初始化类型,可以选择GrabCutInitType.WithRect或GrabCutInitType.WithMask,分别表示根据提供的矩形初始化或根据掩码初始化。

该方法没有返回值,而是直接在mask图像上进行前景分割操作,最终获得的mask包含0-3的值,含义如参数中说明。

        //Grabcut法 private void Button5_Click(object sender, EventArgs e){Mat m = new Mat("C:\\learnEmgucv\\tower.jpg", ImreadModes.AnyColor);Mat result = new Mat();Mat bg = new Mat();Mat fg = new Mat();Rectangle rect = new Rectangle(80, 30, 680, 450);CvInvoke.GrabCut(m, result, rect, bg, fg, 1, GrabcutInitType.InitWithRect);//输出的result只有4个值://0:确定背景//1:确定前景//2:可能背景//3:可能前景//演示框选范围CvInvoke.Rectangle(m, rect, new MCvScalar(255, 255, 255), 1);ImageBox1.Image = m;//标记区域Matrix<byte> matr = new Matrix<byte>(result.Rows, result.Cols);result.CopyTo(matr);for (int i = 0; i < matr.Cols; i++){for (int j = 0; j < matr.Rows; j++){//将确定背景和可能背景标记为0,否则为255if (matr[j, i] == 0 || matr[j, i] == 2)matr[j, i] = 0;elsematr[j, i] = 255;}}Mat midm = new Mat();midm = matr.Mat;//显示标记的图像CvInvoke.Imshow("midm", midm);//灰度转为彩色Mat midm1 = new Mat();CvInvoke.CvtColor(midm, midm1, ColorConversion.Gray2Bgr);Mat mout = new Mat();//And运算CvInvoke.BitwiseAnd(m, midm1, mout);CvInvoke.Imshow("mout", mout);}

输出结果如下图所示:

图8-5 Grabcut法分离前景

       //Grabcut法 private void Button6_Click(object sender, EventArgs e){Mat m = CvInvoke.Imread("C:\\learnEmgucv\\tower.jpg", ImreadModes.Color);Mat result = new Mat();Mat bg = new Mat();Mat fg = new Mat();Rectangle rect = new Rectangle(80, 30, 680, 450);CvInvoke.GrabCut(m, result, rect, bg, fg, 5, GrabcutInitType.InitWithRect);Image<Bgr, byte> src = m.ToImage<Bgr, byte>();Image<Bgr, byte> dst = new Image<Bgr, byte>(new Size(src.Width, src.Height));Image<Gray, byte> mask = result.ToImage<Gray, byte>();//直接操作Image像素点for (int i = 0; i < src.Rows; i++){for (int j = 0; j < src.Cols; j++){//如果是确定前景和可能前景,直接保留原像素点颜色,否则为黑色if (mask.Data[i, j, 0] == 1 || mask.Data[i, j, 0] == 3){dst.Data[i, j, 0] = src.Data[i, j, 0];dst.Data[i, j, 1] = src.Data[i, j, 1];dst.Data[i, j, 2] = src.Data[i, j, 2];}else{dst.Data[i, j, 0] = 0;dst.Data[i, j, 1] = 0;dst.Data[i, j, 2] = 0;}}}ImageBox1.Image = dst;}

输出结果如下图所示:

图8-6 Grabcut法分离前景

      //标记为确定前景,这里使用InitWithMask 参数private void Button7_Click(object sender, EventArgs e){Mat m = new Mat("c:\\learnEmgucv\\lena.jpg", ImreadModes.AnyColor);Mat mask = new Mat();Mat bg = new Mat();Mat fg = new Mat();Rectangle rect = new Rectangle(80, 30, 340, 480);//使用前景为全白色Mat m1 = new Mat("c:\\learnEmgucv\\lena_fillwhite.jpg", ImreadModes.Grayscale);Mat mask1 = new Mat();//二值化CvInvoke.Threshold(m1, mask1, 250, 1, ThresholdType.Binary);CvInvoke.Rectangle(m, rect, new MCvScalar(255, 255, 255), 1);//标记之后再调用GrabCut,使用InitWithMask参数CvInvoke.GrabCut(m, mask1, rect, bg, fg, 2, GrabcutInitType.InitWithMask);Matrix<byte> matrx = new Matrix<byte>(mask1.Rows, mask1.Cols);mask1.CopyTo(matrx);for (int i = 0; i < matrx.Cols; i++)for (int j = 0; j < matrx.Rows; j++)if (matrx[i, j] == 0 || matrx[i, j] == 2)matrx[i, j] = 0;elsematrx[i, j] = 255;Mat midm2 = new Mat();midm2 = matrx.Mat;Mat midm1 = new Mat();CvInvoke.CvtColor(midm2, midm1, ColorConversion.Gray2Bgr);Mat mout = new Mat();CvInvoke.BitwiseAnd(m, midm1, mout);CvInvoke.Imshow("mout", mout);}

输出结果如下图所示:

图8-7 Grabcut法分离前景

由于.net平台下C#和vb.NET很相似,本文也可以为C#爱好者提供参考。

学习更多vb.net知识,请参看vb.net 教程 目录

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/324881.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

三勾点餐|基于java+springboot+vue3实现H5在线点餐系统

三勾点餐系统基于javaspringbootelement-plusuniapp打造的面向开发的小程序商城&#xff0c;方便二次开发或直接使用&#xff0c;可发布到多端&#xff0c;包括微信小程序、微信公众号、QQ小程序、支付宝小程序、字节跳动小程序、百度小程序、android端、ios端外卖点餐系统的应…

开发接口,你需要先搞懂这些概念!

SOA Service Oriented Ambiguity 即面向服务架构&#xff0c; 简称SOA。 SOA的提出是在企业计算领域&#xff0c;就是要将紧耦合的系统&#xff0c;划分为面向业务的&#xff0c;粗粒度&#xff0c;松耦合&#xff0c;无状态的服务。服务发布出来供其他服务调用&#xff0c;一…

【GUI界面软件】抖音评论采集:自动采集10000多条,含二级评论、展开评论!

文章目录 一、背景说明1.1 效果演示1.2 演示视频1.3 软件说明 二、代码讲解2.1 爬虫采集模块2.2 软件界面模块2.3 日志模块 三、获取源码及软件 一、背景说明 1.1 效果演示 您好&#xff01;我是马哥python说&#xff0c;一名10年程序猿。 我用python开发了一个爬虫采集软件…

Rust 字符串 初步了解

rust 的字符串 。字符串不是复合类型&#xff0c; String 和 &str &#xff1a; String 具有所有权&#xff0c;是存储在堆上的。&str 没有所有权&#xff0c;是对 String 的引用。字符串字面量也是 &str 类型&#xff0c;存储在栈上。 切片&#xff08;slice&a…

开发个小破软件——网址导航,解压就能用

网址导航 网站导航也称链接目录&#xff0c;将网站地址或系统地址分类&#xff0c;以列表、图文等形式呈现&#xff0c;帮助快速找到需要的地址。 应用场景 高效查找&#xff1a;网址导航是很好的入口&#xff0c;通过分类清晰的网站推荐&#xff0c;可以迅速访问网站资源。…

【Python学习】2024PyCharm插件推荐

目录 【Python学习】2024PyCharm插件推荐 1. Key Promoter X2.Rainbow CSV3.Markdown4.Rainbow Brackets5.Indent Rainbow6.Regex Tester7.Regex Tester8.Background Image Plus9.Material Theme UI10. Chinese 汉化插件参考 文章所属专区 Python学习 1. Key Promoter X 方便…

超维空间M1无人机使用说明书——31、基于模板匹配的物体识别功能

引言&#xff1a;ROS提供的物体识别功能包find_object_2d&#xff0c;该功能包用起来相对简单&#xff0c;只需要简单进行模板匹配即可。需要接显示器进行模板训练&#xff0c;远程比较卡&#xff0c;不建议 一、功能包find_object_2d简介 ROS的优点之一是有大量可以在应用程…

spring-boot-maven插件repackage(goal)的那些事

前言&#xff1a;在打包Springboot项目成jar包时需要在pom.xml使用spring-boot-maven-plugin来增加Maven功能&#xff0c;在我的上一篇博客<<Maven生命周期和插件的那些事&#xff08;2021版&#xff09;>>中已经介绍过Maven和插件的关系&#xff0c;在此不再赘述&…

黑马程序员SpringBoot2-运维实用篇

视频连接&#xff1a;运维实用篇-51-工程打包与运行_哔哩哔哩_bilibili 打包与运行 程序打包与运行&#xff08;Windows&#xff09; 可执行jar包目录结构 左上角的结构是没有插件打包后的结构&#xff0c;左下是安装插件后的结构。 jar包描述文件&#xff08;MANIFEST.MF&a…

2023高级人工智能期末总结

1、人工智能概念的一般描述 人工智能是那些与人的思维相关的活动&#xff0c;诸如决策、问题求解和学习等的自动化&#xff1b; 人工智能是一种计算机能够思维&#xff0c;使机器具有智力的激动人心的新尝试&#xff1b; 人工智能是研究如何让计算机做现阶段只有人才能做得好的…

小型企业网设计-课设实验-爆款实验

可以按照我的配置依次配置&#xff0c;成品打包文件&#xff0c;请&#xff1a;Ensp888 <Huawei>sys Enter system view, return user view with CtrlZ. [Huawei]un in en Info: Information center is disabled. [Huawei]# [Huawei]sysname SW5 [SW5]# [SW5]vlan batch…

Linux GDB 调试

文章目录 一、Qemu二、Gdbvscode 调试 三、RootFs 一、Qemu qemu 虚拟机 Linux内核学习 Linux 内核调试 一&#xff1a;概述 Linux 内核调试 二&#xff1a;ubuntu20.04安装qemu Linux 内核调试 三&#xff1a;《QEMU ARM guest support》翻译 Linux 内核调试 四&#xff1a;…