【大数据进阶第三阶段之Hive学习笔记】Hive的数据类型与数据操作

【大数据进阶第三阶段之Hive学习笔记】Hive安装-CSDN博客

【大数据进阶第三阶段之Hive学习笔记】Hive常用命令和属性配置-CSDN博客

【大数据进阶第三阶段之Hive学习笔记】Hive基础入门-CSDN博客

【大数据进阶第三阶段之Hive学习笔记】Hive查询、函数、性能优化-CSDN博客
 

1、Hive数据类型

1.1、基本数据类型


红标为常用的数据类型;

对于Hive的String类型相当于数据库的varchar类型,该类型是一个可变的字符串,不过它不能声明其中最多能存储多少个字符。

1.2、集合数据类型

1.3、类型转化

可以使用CAST操作显示进行数据类型转换

例如CAST(‘1’ AS INT)将把字符串’1’ 转换成整数1;如果强制类型转换失败,如执行CAST(‘X’ AS INT),表达式返回空值 NULL。

2、DDL数据定义

2.1、创建数据库

创建一个数据库,数据库在HDFS上的默认存储路径是/opt/hive/warehouse/*.db
create database hivetest;

避免要创建的数据库已经存在错误,增加if not exists判断。(标准写法)
create database if not exists hivetest;

创建一个数据库,指定数据库在HDFS上存放的位置
create database if not exists hivetest location 'hdfs路径';


2.2、查询数据库

显示数据库
show databases;

​ 过滤显示查询的数据库

show databases like 'hivetest*';

查看数据库详情
desc database hivetest;

切换当前数据库
use 目标数据库名称;


2.3删除数据库

删除空数据库
drop database 库名;

如果删除的数据库不存在,最好采用 if exists判断数据库是否存在
drop database if exists 库名;

如果数据库不为空,可以采用cascade命令,强制删除
drop database 库名 cascade;


2.4、创建表


建表语法
CREATE [EXTERNAL] TABLE [IF NOT EXISTS] table_name 
[(col_name data_type [COMMENT col_comment], ...)] 
[COMMENT table_comment] 
[PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)] 
[CLUSTERED BY (col_name, col_name, ...) 
[SORTED BY (col_name [ASC|DESC], ...)] INTO num_buckets BUCKETS] 
[ROW FORMAT row_format] 
[STORED AS file_format] 
[LOCATION hdfs_path]
 

字段解释说明:
(1)CREATE TABLE 创建一个指定名字的表。如果相同名字的表已经存在,则抛出异常;用户可以用 IF NOT EXISTS 选项来忽略这个异常。 

(2)EXTERNAL关键字可以让用户创建一个外部表,在建表的同时指定一个指向实际数据的路径(LOCATION),Hive创建内部表时,会将数据移动到数据仓库指向的路径;若创建外部表,仅记录数据所在的路径,不对数据的位置做任何改变。在删除表的时候,内部表的元数据和数据会被一起删除,而外部表只删除元数据,不删除数据。

(3)COMMENT:为表和列添加注释。

(4)PARTITIONED BY创建分区表

(5)CLUSTERED BY创建分桶表

(6)SORTED BY不常用

(7)ROW FORMAT

DELIMITED [FIELDS TERMINATED BY char] [COLLECTION ITEMS TERMINATED BY char]

​ [MAP KEYS TERMINATED BY char] [LINES TERMINATED BY char]

| SERDE serde_name [WITH SERDEPROPERTIES (property_name=property_value, property_name=property_value, …)]

用户在建表的时候可以自定义SerDe或者使用自带的SerDe。如果没有指定ROW FORMAT 或者ROW FORMAT DELIMITED,将会使用自带的SerDe。在建表的时候,用户还需要为表指定列,用户在指定表的列的同时也会指定自定义的SerDe,Hive通过SerDe确定表的具体的列的数据。

SerDe是Serialize/Deserilize的简称,目的是用于序列化和反序列化。

(8)STORED AS指定存储文件类型

常用的存储文件类型:SEQUENCEFILE(二进制序列文件)、TEXTFILE(文本)、RCFILE(列式存储格式文件)

如果文件数据是纯文本,可以使用STORED AS TEXTFILE。如果数据需要压缩,使用 STORED AS SEQUENCEFILE。

(9)LOCATION :指定表在HDFS上的存储位置。

(10)LIKE允许用户复制现有的表结构,但是不复制数据。

2.4.1、内部表


默认创建的表都是所谓的管理表,有时也被称为内部表。因为这种表,Hive会(或多或少地)控制着数据的生命周期。Hive默认情况下会将这些表的数据存储在由配置项hive.metastore.warehouse.dir(例如,/opt/hive/warehouse)所定义的目录的子目录下。 当我们删除一个管理表时,Hive也会删除这个表中数据。管理表不适合和其他工具共享数据。

普通创建表
create table if not exists student2(
id int, name string
)
row format delimited fields terminated by '\t';

根据查询结果创建表(查询的结果会添加到新创建的表中)
create table if not exists student3 as select id, name from student;

根据已经存在的表结构创建表
create table if not exists student4 like student;

查询表的类型
desc formatted student2;
 

2.4.2、外部表


因为表是外部表,所以Hive并非认为其完全拥有这份数据。删除该表并不会删除掉这份数据,不过描述表的元数据信息会被删除掉。 

管理表和外部表的使用场景
每天将收集到的网站日志定期流入HDFS文本文件。在外部表(原始日志表)的基础上做大量的统计分析,用到的中间表、结果表使用内部表存储,数据通过SELECT+INSERT进入内部表。

案例详解
分别创建employee外部表,并向表中导入数据。

Michael|Montreal,Toronto|Male,30|DB:80|Product:DeveloperLead
Will|Montreal|Male,35|Perl:85|Product:Lead,Test:Lead
Shelley|New York|Female,27|Python:80|Test:Lead,COE:Architect
Lucy|Vancouver|Female,57|Sales:89|Sales:Lead

建表语句
创建员工表

create external table if not exists employee(
name string,
address array<string>,
personalInfo array<string>,
technol map<string,int>,
jobs map<string,string>)
row format delimited
fields terminated by '|'
collection items terminated by ','
map keys terminated by ':'
lines terminated by '\n';

向外部表中导入数据

load data local inpath '/root/employee.txt' into table employee;

查询结果

select * from employee;

2.4.3管理表与外部表的互相转换


修改内部表student2为外部表
alter table student2 set tblproperties('EXTERNAL'='TRUE');

修改外部表student2为内部表
alter table student2 set tblproperties('EXTERNAL'='FALSE');

注意:('EXTERNAL'='TRUE')和('EXTERNAL'='FALSE')为固定写法,区分大小写! 

2.5、分区表(partition)


分区表实际上就是对应一个HDFS文件系统上的独立的文件夹,该文件夹下是该分区所有的数据文件。Hive中的分区就是分目录,把一个大的数据集根据业务需要分割成小的数据集。在查询时通过WHERE子句中的表达式选择查询所需要的指定的分区,这样的查询效率会提高很多。

2.5.1、分区表基本操作
数据

10,ACCOUNTING,NEW YORK
10,ACCOUNTING,NEW YORK
10,ACCOUNTING,NEW YORK
20,RESEARCH,DALLAS
20,RESEARCH,DALLAS
20,RESEARCH,DALLAS
30,SALES,CHICAGO
30,SALES,CHICAGO


1.引入分区表(需要根据日期对日志进行管理)

/opt/hive/warehouse/log_partition/20170702/20170702.log
/opt/hive/warehouse/log_partition/20170703/20170703.log
/opt/hive/warehouse/log_partition/20170704/20170704.log


2.创建分区表语法

create table dept_partition(
deptno int, dname string, loc string
)
partitioned by (month string)
row format delimited fields terminated by ',';


3.加载数据到分区表中

load data local inpath '/opt/dept.txt' into table default.dept_partition partition(month='201707’);
load data local inpath '/opt/dept.txt' into table default.dept_partition partition(month='201708’);
load data local inpath '/opt/dept.txt' into table default.dept_partition partition(month='201709’);

4.查询分区表中数据

单分区查询

select * from dept_partition where month='201709';


多分区联合查询

select * from dept_partition where month='201709'
union
select * from dept_partition where month='201708'
union
select * from dept_partition where month='201707';
 

注意: 

Hive 1.2.0之前的版本仅支持UNION ALL,其中重复的行不会被删除。

Hive 1.2.0和更高版本中,UNION的默认行为是从结果中删除重复的行。

5.增加分区

alter table dept_partition add partition(month='201706') ;

alter table dept_partition add partition(month='201705') partition(month='201704');


6.删除分区

alter table dept_partition drop partition (month='201704');

alter table dept_partition drop partition (month='201705'), partition (month='201706')


7.查看分区表有多少分区

show partitions dept_partition;


8.查看分区表结构

desc formatted dept_partition;


2.6、修改表


2.6.1重命名表


语法
ALTER TABLE table_name RENAME TO new_table_name

实例
alter table dept_partition2 rename to dept_partition3;
 

2.6.2增加/修改/替换列信息


语法
更新列 

ALTER TABLE table_name CHANGE [COLUMN] col_old_name col_new_name column_type [COMMENT col_comment] [FIRST|AFTER column_name]


增加和替换列

ALTER TABLE table_name ADD|REPLACE COLUMNS (col_name data_type [COMMENT col_comment], ...) 


注:ADD是代表新增一字段,字段位置在所有列后面(partition列前),REPLACE则是表示替换表中所有字段。

案例
添加列

alter table dept_partition add columns(deptdesc string);


更新列

alter table dept_partition change column deptdesc desc int;


替换列

alter table dept_partition replace columns(deptno string, dname string, loc string);


2.6.3删除表

drop table dept_partition;

注意:外部表不能简单的通过这个命令删除,这个命令只能删除外部表的元数据,没有办法删除hdfs上面的数据,如果需要将外部表彻底删除,有以下方法:

方案一:转换为内部表再删除
ALTER TABLE xxx SET TBLPROPERTIES('EXTERNAL'='False');

drop table xxx;


方案二:删除元数据,然后使用hdfs删除数据

3、DML数据操作


3.1 数据导入


3.1.1 向表中装载数据(Load)


语法
hive> load data [local] inpath '路径' [overwrite] into table 表名 [partition (partcol1=val1,…)];
1
(1)load data:表示加载数据

(2)local:表示从本地加载数据到hive表;否则从HDFS加载数据到hive表

(3)inpath:表示加载数据的路径

(4)overwrite:表示覆盖表中已有数据,否则表示追加

(5)into table:表示加载到哪张表

(6)表名:表示具体的表

(7)partition:表示上传到指定分区

3.1.2 通过查询语句向表中插入数据(Insert)

案例
基本插入

insert into table  student partition(month='201709') values(1,'wangwu');

insert overwrite table student partition(month='201708') select id, name from student where month='201709';



多插入

from dept_partition
              insert overwrite table dept_partition partition(month='201707')
              select deptno,dname,loc where month='201709'
              insert overwrite table dept_partition partition(month='201706')
              select deptno,dname,loc  where month='201709';


3.1.3 查询语句中创建表并加载数据(As Select)


根据查询结果创建表(查询的结果会添加到新创建的表中)

create table if not exists student3 as select id, name from student;


3.1.4 创建表时通过Location指定加载数据路径


创建表,并指定在hdfs上的位置

create table if not exists student5(
id int, name string)
row format delimited fields terminated by '\t'
location '/user/hive/warehouse/student5';

上传数据到hdfs上

dfs -put /opt/datas/student.txt /opt/hive/warehouse/student5;


3.1.5 Import数据到指定Hive表中


注意:先用export导出后,再将数据导入。

import table student2 partition(month='201709') from '/opt/hive/warehouse/export/student';


3.2 数据导出


3.2.1 Insert导出


1.将查询的结果导出到本地

insert overwrite local directory '/opt/datas' select * from dept_partition;

2.将查询的结果格式化导出到本地

insert overwrite local directory '/opt/datas/dept1'
row format delimited
fields terminated by '|'
select * from dept_partition;


3.将查询的结果导出到HDFS上(没有local)

insert overwrite directory '/opt/datas/dept'
row format delimited
fields terminated by '|'
select * from dept_partition;


3.2.2 Hadoop命令导出到本地


dfs -get /opt/hive/warehouse/employee/employee.txt /opt/datas/dept2/dept.txt;


3.2.3 Hive Shell 命令导出 


基本语法:(hive -f/-e 执行语句或者脚本 > file)

hive -e 'select * from hivetest.dept_partition;' > /opt/datas/dept3/dept.txt;

注意:需要在shell窗口执行,需要库名.表名,需要本地文件夹存在。

3.2.4 Export导出到HDFS上


export table hivetest.dept_partition to '/opt/datas/dept2';

3.3 清除表中数据(Truncate)


注意:Truncate只能删除管理表,不能删除外部表中数据

truncate table student;

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/325313.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

多级缓存、OpenResty缓存、Redis分布式缓存、进程缓存

目录标题 一、预期表现二、环境配置1、nginx环境2、OpenResty环境3、redis环境3.1 安装redis3.2 配置启动命令3.3 配置主从3.4 哨兵 4、进程缓存环境 三 、主要编码工作3.1、缓存主要问题解决3.1.1 缓存穿透3.1.2 缓存雪崩3.1.3 缓存击穿 3.2、OpenResty编码3.2.1 openresty/ng…

Java:爬虫htmlunit

为什么htmlunit与HttpClient两者都可以爬虫、网页采集、通过网页自动写入数据&#xff0c;我们会推荐使用htmlunit呢? 一、网页的模拟化 首先说说HtmlUnit相对于HttpClient的最明显的一个好处&#xff0c;HtmlUnit更好的将一个网页封装成了一个对象&#xff0c;如果你非要说H…

鸿蒙开发之拖拽事件

一、拖拽涉及的方法 Text(this.message).fontSize(50).fontWeight(FontWeight.Bold)//拖拽开始.onDragStart((event: DragEvent) > {console.log(drag event onDragStartevent.getX())})//拖拽进入组件范围&#xff0c;需要监听onDrop配合.onDragEnter((event: DragEvent) …

解决:ModuleNotFoundError: No module named ‘bs4’

解决&#xff1a;ModuleNotFoundError: No module named ‘bs4’ 文章目录 解决&#xff1a;ModuleNotFoundError: No module named bs4背景报错问题报错翻译报错位置代码报错原因解决方法方法一&#xff0c;直接安装方法二&#xff0c;手动下载安装方法三&#xff0c;编译安装…

6 网关和配置服务器

文章目录 网关模式Spring Cloud网关Spring Cloud网关微服务其他项目的变更运行和测试小结 运行状况Spring Boot Actuator在微服务中包含Actuator 服务发现和负载均衡ConsulSpring Cloud ConsulSpring Cloud负载均衡器网关中的服务发现和负载均衡使用服务发现和负载均衡 环境配置…

机器视觉系统选型-环境配置:报错序列不包含任何元素 的解决方法

描述 环境&#xff1a;VM4.0.0VS2015 及以上 现象&#xff1a;配置环境后&#xff0c;获取线线测量模块结果&#xff0c;报错“序列不包含任何元素”。如下图所示&#xff1a; 解答 将“\VisionMaster4.0.0\Development\V4.0.0 \ComControls\bin\x64”下整体重新拷贝。

React 入门 - 01

本章内容 目录 1. 简介1.1 初始 React1.2 React 相关技术点1.3 React.js vs Vue.js 2. React 开发环境准备2.1 关于脚手架工具2.2 create-react-app 构建一个 React 项目工程 1. 简介 1.1 初始 React React JS 是 Facebook 在 2013年5月开源的一款前端框架&#xff0c;其带来…

mysql之CRUD和常见函数和UNION 和 UNION ALL

mysql之CRUD和常见函数和UNION 和 UNION ALL 一.CRUD1.创建&#xff08;Create&#xff09; - 插入数据2.读取&#xff08;Read&#xff09; - 查询数据3.更新&#xff08;Update&#xff09; - 修改数据4.删除&#xff08;Delete&#xff09; - 删除数据 二.函数1.字符串函数&…

oracle 补齐数字长度 to_char踩坑

oracle的to_char网上找到的说明如下 &#xff08;1&#xff09;用作日期转换&#xff1a; to_char(date,格式); select to_date(2005-01-01 ,yyyy-MM-dd) from dual; select to_char(sysdate,yyyy-MM-dd HH24:mi:ss) from dual; &#xff08;2&#xff09;处理数字&#xf…

MongoDB数据类型详解

BSON 协议与数据类型 MongoDB 为什么会使用 BSON&#xff1f; JSON 是当今非常通用的一种跨语言 Web 数据交互格式&#xff0c;属 ECMAScript 标准规范的一个子集。JSON &#xff08;JavaScript Object Notation&#xff0c;JS 对象简谱&#xff09;即 JavaScript 对象表示法…

【2023 CCF 大数据与计算智能大赛】基于TPU平台实现超分辨率重建模型部署 基于QuickRNet的TPU超分模型部署

2023 CCF 大数据与计算智能大赛 《赛题名称》 基于QuickRNet的TPU超分模型部署 巴黎欧莱雅 林松 智能应用业务部算法工程师 中信科移动 中国-北京 gpu163.com 团队简介 巴黎欧莱雅团队包含一个队长和零个队员。 队长林松&#xff0c;研究生学历&#xff0c;2019-202…

字节填充与0比特填充以及数据链路的基本问题

目录 字节填充&#xff1a; 比特填充&#xff1a; 数据链路有三个基本问题 1.封装成帧 2.透明传输 3.差错检测 首先介绍一下PPP的帧结构&#xff1a; 首部的第一个字段和尾部的第二个字段都是标志字段F(Flag)&#xff0c;规定为0x7E (符号“0x”表示它后面的字符是用十六…