一文详解动态 Schema

在数据库中,Schema 常有,而动态 Schema 不常有。

例如,SQL 数据库有预定义的 Schema,但这些 Schema 通常都不能修改,用户只有在创建时才能定义 Schema。Schema 的作用是告诉数据库使用者所希望的表结构,确保每行数据都符合该表的 Schema。NoSQL 数据库通常都支持动态 Schema 或可以不创建 Schema(即在创建数据库时无需为每个对象定义属性)。

而在 Milvus 社区中,支持动态 Schema 亦是呼声较高的功能之一。为了更好地满足用户需求,Milvus 在 2.2.9 中发布了这一功能,数据库 Schema 便可以根据用户添加数据而“动态变化”。此后,用户无需像以前一样在插入数据时严格遵循预先定义的 Schema,可以像在 NoSQL 数据库中一般,以 JSON 格式添加数据。

不过,我们发现很多用户对于在向量数据库中使用动态 Schema 的 A、B 面及其作用仍有不少疑问,本文将一一解答。

01.什么是数据库 Schema?

什么是数据库 Schema?我们举例来看:

alt

Schema 定义了如何在数据库中插入和存储数据,上图展示了如何为关系型数据库创建一个标准的 Schema。

在上图的数据库中, 一共有 4 张表,每张表都有各自的 Schema。图片中间的表有 4 列数据,其余 3 张表有 2 列数据。

此外,我们还需要在 Schema 中定义数据类型。“Employee”、“Title”和“DeptName”列都将是字符串(即VARCHAR),“CourseID”也是字符串,“EmpID”和“DeptID”列数据是整数,而“Date”列数据类型可以是日期或 VARCHAR。

02.什么是向量数据库 Schema?

以我们之前的文章《书接上回,如何用 LlamaIndex 搭建聊天机器人?》为例,下图展示了 1 个 Zilliz Cloud 实例中的 1 条数据:

alt

如果在传统的数据库中定义 Schema,那么针对这条数据,我们需要创建 11 列 Schema。

其中,“id”、“paragraph”、“subtitle”、“publication”、“article_url”和“title” 这 6 列数据类型为VARCHAR;“reading_time”、“responses”和“claps” 这 3 列数据类型为整数(INT);“date”列数据类型为日期(DATE);剩下的最后一列“embedding” 的数据类型为浮点向量(FLOAT_VECTOR),用于存储 Embedding 向量数据。

如何使用 Milvus 向量数据库中的 Dynamic Schema 功能?

下面的代码片段展示了如何在 Milvus 中开启动态 Schema 功能,以及如何将数据插入到动态字段并执行过滤搜索。

from pymilvus import (connections,FieldSchema, CollectionSchema, DataType,Collection,
)
DIMENSION = 8
COLLECTION_NAME = "books"
connections.connect("default", host="localhost", port="19530")
fields = [FieldSchema(name='id', dtype=DataType.INT64, is_primary=True),FieldSchema(name='title', dtype=DataType.VARCHAR, max_length=200),FieldSchema(name='embeddings', dtype=DataType.FLOAT_VECTOR, dim=DIMENSION)
]
Schema = CollectionSchema(fields=fields, enable_dynamic_field=True)
collection = Collection(name=COLLECTION_NAME, Schema=Schema)
data_rows = [{"id": 1, "title": "Lord of the Flies","embeddings": [0.64, 0.44, 0.13, 0.47, 0.74, 0.03, 0.32, 0.6],"isbn": "978-0399501487"},{"id": 2, "title": "The Great Gatsby","embeddings": [0.9, 0.45, 0.18, 0.43, 0.4, 0.4, 0.7, 0.24],"author": "F. Scott Fitzgerald"},{"id": 3, "title": "The Catcher in the Rye","embeddings": [0.43, 0.57, 0.43, 0.88, 0.84, 0.69, 0.27, 0.98],"claps": 100},
]
collection.insert(data_rows)
collection.create_index("embeddings", {"index_type": "FLAT", "metric_type": "L2"})
collection.load()
vector_to_search = [0.57, 0.94, 0.19, 0.38, 0.32, 0.28, 0.61, 0.07]
result = collection.search(data=[vector_to_search],anns_field="embeddings",param={},limit=3,expr="claps > 30 || title =='The Great Gatsby'",output_fields=["title", "author", "claps", "isbn"],consistency_level="Strong")for hits in result:for hit in hits:print(hit.to_dict())

在创建的 Collection “books”中,我们定义了 Schema,其中包含 3 个字段:idtitleembeddings。id是主键列——每行数据的唯一标识符,数据类型为INT64title代表书名,数据类型为VARCHARembeddings是向量列,向量维度为 8。注意,本文代码中的向量数据为随机设置,仅用于演示目的。

Schema = CollectionSchema(fields=fields, enable_dynamic_field=True)
collection = Collection(name=COLLECTION_NAME, Schema=Schema)

我们通过在定义时向CollectionSchema对象传入一个字段来开启动态Schema。简而言之,只需要添加enable_dynamic_field 并将其参数值设置为True 即可。

data_rows = [{"id": 1, "title": "Lord of the Flies","embeddings": [0.64, 0.44, 0.13, 0.47, 0.74, 0.03, 0.32, 0.6],"isbn": "978-0399501487"},{"id": 2, "title": "The Great Gatsby","embeddings": [0.9, 0.45, 0.18, 0.43, 0.4, 0.4, 0.7, 0.24],"author": "F. Scott Fitzgerald"},{"id": 3, "title": "The Catcher in the Rye","embeddings": [0.43, 0.57, 0.43, 0.88, 0.84, 0.69, 0.27, 0.98],"claps": 100},
]

在上述代码中,我们插入了 3 行数据。id=1的数据包括动态字段isbnid=2包括authorid=3包括claps。这些动态字段具有不同的数据类型,包括字符串类型(isbnauthor)和整数类型(claps)。

result = collection.search(data=[vector_to_search],anns_field="embeddings",param={},limit=3,expr="claps > 30 || title =='The Great Gatsby'",output_fields=["title", "author", "claps", "isbn"],consistency_level="Strong")

在上述代码中,我们进行了过滤查询。过滤查询结合了ANNS(近似最近邻)搜索和基于动态和静态字段的标量过滤,查询的目的是检索满足expr参数中指定条件的数据,输出包括titleauthorclapsisbn字段,expr参数允许基于 Schema 字段(或称之为静态字段)title和动态字段claps进行过滤。

运行代码后,输出结果如下:

{'id': 2, 'distance': 0.40939998626708984, 'entity': {'title': 'The Great Gatsby', 'author': 'F. Scott Fitzgerald'}}
{'id': 3, 'distance': 1.8463000059127808, 'entity': {'title': 'The Catcher in the Rye', 'claps': 100}}

Milvus 如何实现动态 Schema 功能?

Milvus 通过用隐藏的元数据列的方式,来支持用户为每行数据添加不同名称和数据类型的动态字段的功能。当用户创建表并开启动态字段时,Milvus 会在表的 Schema 里创建一个名为$meta的隐藏列。JSON 是一种不依赖语言的数据格式,被现代编程语言广泛支持,因此 Milvus 隐藏的动态实际列使用 JSON 作为数据类型。

Milvus 以列式结构组织数据,在插入数据过程中,每行数据中的动态字段数据被打包成 JSON 数据,所有行的 JSON 数据共同形成隐藏的动态列 $meta

03.动态 Schema 的 A、B 面

当然,动态 Schema 的功能并不一定适合所有用户,大家可以根据自己的场景和需求选择开启或关闭动态 Schema。

一方面,动态 Schema 设置简便,无需复杂的配置即可开启动态 Schema;动态 Schema 可以随时适应数据模型的变化,开发者无需进行重构或调整代码。

另一方面,使用动态 Schema 进行过滤搜索比固定 Schema 慢得多;在动态 Schema 上进行批量插入比较复杂,推荐用户使用行式插入接口写入动态字段数据。

当然,为了应对上述挑战,Milvus 已经整合了向量化执行模型来提升过滤搜索效率。向量化执行的思想就是不再像火山模型一样调用一个算子一次处理一行数据,而是一次处理一批数据。这种计算模式在计算过程中也具有更好的数据局部性,从而显著提高了整体系统性能。

04.总结

看到这里,相信大家对于如何在 Milvus 中使用动态 Schema 有了更深的认识,需要提醒大家的是,动态Schema 功能拥有 A、B 两面,一方面提供了动态 Schema 设置简便,为用户提供灵活性和高效率。但另一方面,使用动态 Schema 的过滤搜索比固定 Schema 慢,而且在动态 Schema 上进行批量插入的情况更加复杂。Milvus 利用向量化执行模型来应对动态 Schema 的一些劣势,从而优化整体系统性能。

后续,我们还将在 Milvus 2.4 中增强标量索引能力,通过静态和动态字段的倒排索引加速过滤查询,实现动态 Schema 管理和查询的性能和效率提升。

本文由 mdnice 多平台发布

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/325623.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Docker资源配额

Docker资源配额指的是对Docker容器或服务在系统资源使用方面的限制。 通过资源配额,可以控制和限制Docker容器可以使用的CPU、内存、磁盘空间和网络带宽等资源。 根据应用程序的需求和系统环境来设置适当的资源配额:过于严格的配额可能导致应用程序性能下…

05、Kafka ------ CMAK 各个功能的作用解释(主题和分区 详解,用命令行和图形界面创建主题和查看主题)

目录 CMAK 各个功能的作用解释(主题)★ 主题★ 分区★ 创建主题:★ 列出和查看主题 CMAK 各个功能的作用解释(主题) ★ 主题 Kafka 主题虽然也叫 topic,但它和 Pub-Sub 消息模型中 topic 主题及 AMQP 的 t…

专业课130+,总分390+四川大学951信号与系统考研通信,电子信息经验分享

今年专业课130,总分390,顺利上岸,将近一年复习一路走来,感慨很多,希望以下经历可以给后来的同学提供一些参考。 初试备考经验 公共课:三门公共课,政治,英语,数学。在备…

药品销售管理系统

一、系统总体设计 该系统是针对医药销售行业所设计,主要用来管理销售药品所产生的额大量信息。该系统可帮助从医人员便捷管理药品销售信息,极大的提高工作效率,降低人工操作的失误率,为药品的销售者和购买者提供便利。根据对需求的…

astadmin安装querylist插件Puppeteer

我本来是想在linux服务器上安装,折腾了一天也没安装成功,由于急着用,就先做window10上安装了,以后有时间再研究centos7上安装 一 首先需要安装fastadmin 框架和querylist插件 这个大家可以自行安装,querylist安装地址…

AI硬件2——SIPEED MaixCube(Kendryte K210)基础使用

系列文章目录 官方网站 开发文档 文章目录 系列文章目录前言一、特点介绍1、MaixPy2、KPU3、MaixPy IDE4、kmodel 二、环境准备1、USB 驱动安装1)Linux2)Windows 2、更新固件3、串口工具1)连接硬件2)Windows串口工具3&#xff09…

PHP进阶-实现网站的QQ授权登录

授权登录是站点开发常见的应用场景,通过社交媒体一键授权可以跳过注册站点账户的繁琐操作。本文将讲解如何用PHP实现QQ授权登录。首先,我们需要申请QQ互联开发者账号获得APPID和密钥;接着,我们下载QQ官方SDK:PHP SDK v…

电商API-获取拼多多商品详情数据精准价格API测试示例

pinduoduo.item_get_app_pro获取拼多多商品详情数据 如何获取apikey? 公共参数 名称类型必须描述keyString是调用key(必须以GET方式拼接在URL中)secretString是调用密钥api_nameString是API接口名称(包括在请求地址中&#xff…

20 太空漫游

效果演示 实现了一个太空漫游的动画效果,其中包括火箭、星星和月亮。当鼠标悬停在卡片上时,太阳和星星会变成黄色,火箭会变成飞机,月亮会变成小型的月亮。整个效果非常炫酷,可以让人想起科幻电影中的太空漫游。 Code &…

淘宝商品详情API接口(item_get-获得淘宝商品详情)主图,属性,sku,价格,搜索商品列表

淘宝开放平台提供了API接口,允许开发者获取淘宝商品的相关信息。为了获取商品详情,您可以使用 item_get API接口。以下是如何使用此API接口来获取商品的主图、属性、SKU、价格以及搜索商品列表的简要说明: 公共参数 名称类型必须描述keyStr…

面试之线程状态

1.线程有哪些状态 1.1Java线程的六种状态 Java 线程六种状态 新建 当一个线程对象被创建,但还未调用 start 方法时处于新建状态 此时未与操作系统底层线程关联 可运行 调用了 start 方法,就会由新建进入可运行 此时与底层线程关联,由操作…

【Turtle库】圣诞树

在寒冷的冬季,没有什么比一棵亮丽的圣诞树更能带给我们温暖和快乐。而现在,我们将使用Python编程语言来绘制这样一棵美丽的圣诞树。 首先,我们需要导入Python的turtle模块,它可以帮助我们绘制图形。然后,我们可以定义一…