损失函数篇 | YOLOv8 引入 Shape-IoU 考虑边框形状与尺度的度量

作者导读:Shape-IoU:考虑边框形状与尺度的度量

论文地址:https://arxiv.org/abs/2312.17663

作者视频解读:https://www.bilibili.com

开源代码地址:https://github.com/malagoutou/Shape-IoU/blob/main/shapeiou.py


在这里插入图片描述

在这里插入图片描述

作为检测器定位分支的重要组成,边框回归损失在目标检测任务中发挥巨大作用。现有的边框回归方法,通常考虑了GT框与预测框之间的几何关系,通过使用边框间的相对位置与相对形状等计算损失,而忽略了边框其自身的形状与尺度等固有属性对边框回归的影响。为了弥补现有研究的不足,本文提出聚焦边框自身形状与尺度的边框回归方法。首先我们对边框回归特性进行分析,得出边框自身形状因素与尺度因素会对回归结果产生影响。接着基于以上结论我们,我们提出了Shape-IoU方法,其能够通过聚焦边框自身形状与自身尺度计算损失,从而使得边框回归更为精确。最后我们通过大量的对比实验来验证本文方法,实验结果表明本文方法能够有效提升检测效果且优于现有方法,在不同的检测任务中达到了sota.


源代码

def shape_iou(box1, box2, xywh=True, scale=0, eps=1e-7):(x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_# Intersection areainter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)# Union Areaunion = w1 * h1 + w2 * h2 - inter + eps# IoUiou = inter / union# Shape-Distance    #Shape-Distance    #Shape-Distance    #Shape-Distance    #Shape-Distance    #Shape-Distance    #Shape-Distanceww = 2 * torch.pow(w2, scale) / (torch.pow(w2, scale) + torch.pow(h2, scale))hh = 2 * torch.pow(h2, scale) / (torch.pow(w2, scale) + torch.pow(h2, scale))cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1)  # convex widthch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1)  # convex heightc2 = cw**2 + ch**2 + eps  # convex diagonal squaredcenter_distance_x = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2) / 4center_distance_y = ((b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4center_distance = hh * center_distance_x + ww * center_distance_ydistance = center_distance / c2# Shape-Shape    #Shape-Shape    #Shape-Shape    #Shape-Shape    #Shape-Shape    #Shape-Shape    #Shape-Shape    #Shape-Shapeomiga_w = hh * torch.abs(w1 - w2) / torch.max(w1, w2)omiga_h = ww * torch.abs(h1 - h2) / torch.max(h1, h2)shape_cost = torch.pow(1 - torch.exp(-1 * omiga_w), 4) + torch.pow(1 - torch.exp(-1 * omiga_h), 4)# Shape-IoU    #Shape-IoU    #Shape-IoU    #Shape-IoU    #Shape-IoU    #Shape-IoU    #Shape-IoU    #Shape-IoU    #Shape-IoUiou = iou - distance - 0.5 * (shape_cost)return iou  # IoU

实验结果

在这里插入图片描述在这里插入图片描述
在这里插入图片描述


YOLOv8 使用方式

  1. 将源代码粘贴到 ultralytics\utils\metrics.py 中;
  2. ultralytics/utils/loss.py 导包导入 shape-iou在这里插入图片描述
  3. 将原本的 iou = bbox_iou(pred_bboxes[fg_mask], target_bboxes[fg_mask], xywh=False, CIoU=True) 替换为我下面这句在这里插入图片描述
iou = shape_iou(pred_bboxes[fg_mask], target_bboxes[fg_mask])

论文引用

作者 CSDN 主页 :剁椒狗头

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/326759.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【激活函数】PReLU 激活函数

1、介绍 PReLU(Parametric Rectified Linear Unit)激活函数是ReLU(Rectified Linear Unit)激活函数的一种改进。它是由 He et al. 在 2015 年提出的,旨在解决ReLU激活函数的一些局限性。 # 定义 PReLU 激活函数 prelu…

合合TextIn团队发布 - 文档图像多模态大模型技术发展、探索与应用

合合信息TextIn(Text Intelligence)团队在2023年12月31日参与了中国图象图形学学会青年科学家会议 - 垂直领域大模型论坛。在会议上,丁凯博士分享了文档图像大模型的思考与探索,完整阐述了多模态大模型在文档图像领域的发展与探索…

FSMC—扩展外部SRAM

一、SRAM控制原理 STM32控制器芯片内部有一定大小的SRAM及FLASH作为内存和程序存储空间,但当程序较大,内存和程序空间不足时,就需要在STM32芯片的外部扩展存储器了。STM32F103ZE系列芯片可以扩展外部SRAM用作内存。 给STM32芯片扩展内存与给…

9个最受欢迎的开源自动化测试框架盘点

如果想学习提升找不到资料,没人答疑解惑时,请及时加入群:1150305204,里面有各种测试开发资料和技术可以一起交流哦。 自动化测试框架可以帮助测试人员评估多个web和移动应用程序的功能,安全性,可用性和可访…

Mac启动时候出现禁止符号

Mac启动时候出现禁止符号 启动时候出现禁止符号,意味着 选定的启动磁盘 包含 Mac 操作系统,但它不是 您的 Mac 可以使用的 macOS 。您应该在这个磁盘上 重新安装 macOS 。 可以尝试以下苹果提供的方法: Mac启动时候出现禁止符号 不要轻易抹除磁盘&am…

Http与Tcp协议的原理以及应用

OSI七层模型和相关协议 七层模型从上到下如下所示: 应用层:负责应用之间的通信,处理请求和响应的具体格式表示层:对于数据格式进行处理会话层:负责建立和断开通信连接,传输层:负责建立端口之间…

【AI视野·今日NLP 自然语言处理论文速览 第六十七期】Mon, 1 Jan 2024

AI视野今日CS.NLP 自然语言处理论文速览 Mon, 1 Jan 2024 Totally 42 papers 👉上期速览✈更多精彩请移步主页 Daily Computation and Language Papers Principled Gradient-based Markov Chain Monte Carlo for Text Generation Authors Li Du, Afra Amini, Lucas…

哈希一致性算法

一致性哈希是什么,使用场景,解决了什么问题? #网站分配请求问题? 大多数网站背后肯定不是只有一台服务器提供服务,因为单机的并发量和数据量都是有限的,所以都会用多台服务器构成集群来对外提供服务。 但…

项目从npm迁移到pnpm

场景如下:在安装Vue3时默认为使用Npm安装,如图所示: 安装完后项目就包含了基于NPM的node_modules、package.json,以及package-lock.json 如果想使用pnpm去安装依赖项的话,可以通过如下几个步骤实现: ①删…

学会视频剪辑方法:从视频中提取封面,增加视频观看量

在数字媒体时代,视频已经成为信息传递的主要方式之一。那如何让视频在众多内容中脱颖而出,吸引更多的观众呢?除了内容本身的质量外,视频的封面也是吸引的关键因素之一。下面一起看云炫AI智剪如何通过视频剪辑方法从视频中提取封面…

测试遗漏是能力问题?

如果想学习提升找不到资料,没人答疑解惑时,请及时加入群:1150305204,里面有各种测试开发资料和技术可以一起交流哦。 昨天和老黄(研发 TL)讨论关于漏测的问题。老黄的观点还算中立:一方面认同在…

Linux 上 Nginx 上传文件报错:413 request entity too large

目录 一、前言二、解决思路三、解决方案四、结尾 一、前言 最近在自己折腾 Blog,把项目部署到服务器上后,发现上传文件的接口居然报错了:413 request entity too large,一看这错误,发现是 nginx 配置的原因&#xff0c…