debug mccl 02 —— 环境搭建及初步调试

1, 搭建nccl 调试环境

下载 nccl 源代码

 git clone --recursive https://github.com/NVIDIA/nccl.git


只debug host代码,故将设备代码的编译标志改成 -O3

 

(base) hipper@hipper-G21:~/let_debug_nccl/nccl$ git diff 
diff --git a/makefiles/common.mk b/makefiles/common.mk
index a037cf3..ee2aa8e 100644
--- a/makefiles/common.mk
+++ b/makefiles/common.mk
@@ -82,7 +82,8 @@ ifeq ($(DEBUG), 0)NVCUFLAGS += -O3CXXFLAGS  += -O3 -gelse
-NVCUFLAGS += -O0 -G -g
+#NVCUFLAGS += -O0 -G -g
+NVCUFLAGS += -O3CXXFLAGS  += -O0 -g -ggdb3endif

修改后变成如下:

nccl$ vim makefiles/common.mk

ifeq ($(DEBUG), 0)
NVCUFLAGS += -O3
CXXFLAGS  += -O3 -g
else
#NVCUFLAGS += -O0 -G -g
NVCUFLAGS += -O3
CXXFLAGS  += -O0 -g -ggdb3
endif

构建 nccl shared library:

机器上是几张sm_85 的卡,故:

$ cd nccl
$ make -j src.build  DEBUG=1       NVCC_GENCODE="-gencode=arch=compute_80,code=sm_80"

到此即可,不需要安装nccl,直接过来使用即可;

2, 创建调试APP


在nccl所在的目录中创建app文件夹:

$ mkdir app$ cd app$ vim sp_md_nccl.cpp$ vim Makefile

sp_md_nccl.cpp:

#include <stdlib.h>
#include <stdio.h>
#include "cuda_runtime.h"
#include "nccl.h"
#include <time.h>
#include <sys/time.h>#define CUDACHECK(cmd) do {                         \cudaError_t err = cmd;                            \if (err != cudaSuccess) {                         \printf("Failed: Cuda error %s:%d '%s'\n",       \__FILE__,__LINE__,cudaGetErrorString(err)); \exit(EXIT_FAILURE);                             \}                                                 \
} while(0)#define NCCLCHECK(cmd) do {                         \ncclResult_t res = cmd;                           \if (res != ncclSuccess) {                         \printf("Failed, NCCL error %s:%d '%s'\n",       \__FILE__,__LINE__,ncclGetErrorString(res)); \exit(EXIT_FAILURE);                             \}                                                 \
} while(0)void  get_seed(long long &seed)
{struct timeval tv;gettimeofday(&tv, NULL);seed = (long long)tv.tv_sec * 1000*1000 + tv.tv_usec;//only second and usecond;printf("useconds:%lld\n", seed);
}void  init_vector(float* A, int n)
{long long seed = 0;get_seed(seed);srand(seed);for(int i=0; i<n; i++){A[i] = (rand()%100)/100.0f;}
}void print_vector(float* A, float size)
{for(int i=0; i<size; i++)printf("%.2f ", A[i]);printf("\n");
}void vector_add_vector(float* sum, float* A, int n)
{for(int i=0; i<n; i++){sum[i] += A[i];}
}int main(int argc, char* argv[])
{ncclComm_t comms[4];printf("ncclComm_t is a pointer type, sizeof(ncclComm_t)=%lu\n", sizeof(ncclComm_t));//managing 4 devices//int nDev = 4;int nDev = 2;//int size = 32*1024*1024;int size = 16*16;int devs[4] = { 0, 1, 2, 3 };float** sendbuff_host = (float**)malloc(nDev * sizeof(float*));float** recvbuff_host = (float**)malloc(nDev * sizeof(float*));for(int dev=0; dev<nDev; dev++){sendbuff_host[dev] = (float*)malloc(size*sizeof(float));recvbuff_host[dev] = (float*)malloc(size*sizeof(float));init_vector(sendbuff_host[dev], size);init_vector(recvbuff_host[dev], size);}//sigma(sendbuff_host[i]); i = 0, 1, ..., nDev-1float* result = (float*)malloc(size*sizeof(float));memset(result, 0, size*sizeof(float));for(int dev=0; dev<nDev; dev++){vector_add_vector(result, sendbuff_host[dev], size);printf("sendbuff_host[%d]=\n", dev);print_vector(sendbuff_host[dev], size);}printf("result=\n");print_vector(result, size);//allocating and initializing device buffersfloat** sendbuff = (float**)malloc(nDev * sizeof(float*));float** recvbuff = (float**)malloc(nDev * sizeof(float*));cudaStream_t* s = (cudaStream_t*)malloc(sizeof(cudaStream_t)*nDev);for (int i = 0; i < nDev; ++i) {CUDACHECK(cudaSetDevice(i));CUDACHECK(cudaMalloc(sendbuff + i, size * sizeof(float)));CUDACHECK(cudaMalloc(recvbuff + i, size * sizeof(float)));CUDACHECK(cudaMemcpy(sendbuff[i], sendbuff_host[i], size*sizeof(float), cudaMemcpyHostToDevice));CUDACHECK(cudaMemcpy(recvbuff[i], recvbuff_host[i], size*sizeof(float), cudaMemcpyHostToDevice));CUDACHECK(cudaStreamCreate(s+i));}//initializing NCCLNCCLCHECK(ncclCommInitAll(comms, nDev, devs));//calling NCCL communication API. Group API is required when using//multiple devices per threadNCCLCHECK(ncclGroupStart());printf("blocked ncclAllReduce will be calleded\n");fflush(stdout);for (int i = 0; i < nDev; ++i)NCCLCHECK(ncclAllReduce((const void*)sendbuff[i], (void*)recvbuff[i], size, ncclFloat, ncclSum, comms[i], s[i]));printf("blocked ncclAllReduce is calleded nDev =%d\n", nDev);fflush(stdout);NCCLCHECK(ncclGroupEnd());//synchronizing on CUDA streams to wait for completion of NCCL operationfor (int i = 0; i < nDev; ++i) {CUDACHECK(cudaSetDevice(i));CUDACHECK(cudaStreamSynchronize(s[i]));}for (int i = 0; i < nDev; ++i) {CUDACHECK(cudaSetDevice(i));CUDACHECK(cudaMemcpy(recvbuff_host[i], recvbuff[i], size*sizeof(float), cudaMemcpyDeviceToHost));}for (int i = 0; i < nDev; ++i) {CUDACHECK(cudaSetDevice(i));CUDACHECK(cudaStreamSynchronize(s[i]));}for(int i=0; i<nDev; i++) {printf("recvbuff_dev2host[%d]=\n", i);print_vector(recvbuff_host[i], size);}//free device buffersfor (int i = 0; i < nDev; ++i) {CUDACHECK(cudaSetDevice(i));CUDACHECK(cudaFree(sendbuff[i]));CUDACHECK(cudaFree(recvbuff[i]));}//finalizing NCCLfor(int i = 0; i < nDev; ++i)ncclCommDestroy(comms[i]);printf("Success \n");return 0;
}

Makefile:


INC := -I /usr/local/cuda/include -I ../nccl/build/include
LD_FLAGS := -L ../nccl/build/lib -lnccl -L /usr/local/cuda/lib64 -lcudartEXE := singleProc_multiDev_ncclall: $(EXE)%: %.cppg++ -g -ggdb3  $<  -o  $@  $(INC)  $(LD_FLAGS).PHONY: clean
clean: -rm -rf $(EXE)

export LD_LIBRARY_PATH=../nccl/build/lib

3, 开始调试


$ cuda-gdb sp_md_nccl(cuda-gdb) start (cuda-gdb) rbreak doLauches(cuda-gdb) c(cuda-gdb) p ncclGroupCommHead->tasks.collQueue.head->op 

初步实现了可debug的效果:

现在想要搞清楚在程序调用 ncclAllReduce(..., ncclSum,  ... ) 后,是如何映射到 cudaLaunchKernel调用到了正确的 cuda kernel 函数的。

在doLaunches函数中,作如下debug动作:

查看 doLaunches(ncclComm*) 的函数参数,即,gropu.cc中的变量:ncclGroupCommHead的某个成员的成员的值:op

其结果如下:

(cuda-gdb) p ncclGroupCommHead                           
$5 = (ncclComm *) 0x5555563231e0
(cuda-gdb) p ncclGroupCommHead->tasks.collQueue.head->op 
$6 = {op = ncclDevSum, proxyOp = ncclSum, scalarArgIsPtr = false, scalarArg = 256}
(cuda-gdb) 

不过这依然只停留在了 ncclSum的这个枚举类型上,还没锁定对应的cudaKernel。

接下来继续努力 ...

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/326847.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

scanf函数和printf函数

1.scanf函数 int scanf ( const char * format, ... );函数功能&#xff1a; 从键盘读取数据如果读取成功&#xff0c;返回读取到的数据个数如果读取失败&#xff0c;返回EOF 不常见的读取格式&#xff1a; %md -->读取m个宽度的数据 int main() {int n 0;scanf("%4d&…

安装阿里云CLI之配置阿里云凭证信息

有时候需要再主机上通过 OpenAPI 的调用访问阿里云&#xff0c;并完成控制&#xff0c;此时就需要在服务器上安装阿里云CLI&#xff0c;并完成账号的设置。 1. 登录阿里云创建账号 1.1 点击阿里云头像 ——》 控制访问 ——》创建一个拥有DNS权限的用户 这个用户不用太多权限…

ATTCK视角下的信息收集:主机发现

目录 1、利用协议主动探测主机存活 利用ICMP发现主机 利用ARP发现主机 利用NetBIOS协议发现主机 利用TCP/UDP发现主机 利用DNS协议发现主机 利用PRC协议发现主机程序 2、被动主机存活检测 利用Browser主机探测存活主机 利用ip段探测主机存活 利用net命令探测主机存活…

Redis实现订单超时自动关闭真的好吗,MQ更具性价比

由于Redis具有过期监听的功能&#xff0c;于是就有人拿它来实现订单超时自动关闭的功能&#xff0c;但是这个方案并不完美。今天来聊聊11种实现订单超时自动关闭的方案&#xff0c;总有一种适合你&#xff01;这些方案并没有绝对的好坏之分&#xff0c;只是适用场景的不大相同。…

2024--Django平台开发-Web框架和Django基础(二)

day02 Web框架和Django基础 今日概要&#xff1a; 网络底层引入&#xff0c;到底什么是web框架&#xff1f;常见web框架对比django快速上手&#xff08;创建网站&#xff09;常见操作&#xff1a;虚拟环境、django项目、多app应用、纯净版逐点剖析&#xff1a;路由、视图、模…

【Linux 内核源码分析】关于Linux内核源码目录结构

Linux内核源码采用树形结构。功能相关的文件放到不同的子目录下面&#xff0c;使程序更具有可读行。 使用Source Insight打开源码&#xff0c;如下图所示&#xff0c;可以看到源码是树形结构。 目录含义描述arch存放与体系结构相关的代码&#xff0c;包括不同硬件平台的特定代…

聚类分析 | Matlab实现基于RIME-DBSCAN的数据聚类可视化

聚类分析 | Matlab实现基于RIME-DBSCAN的数据聚类可视化 目录 聚类分析 | Matlab实现基于RIME-DBSCAN的数据聚类可视化效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.聚类分析 | Matlab实现基于RIME-DBSCAN的数据聚类可视化&#xff08;完整源码和数据) 2.多特征输入&…

Linux下从sqlite3源码编译出sqlite3库及相关可执行程序

目录 1. 下载sqlite3源码并编译 2. 下载Tcl库并编译 3. 再次编译sqlite源码 1. 下载sqlite3源码并编译 打开SQLite Download Page&#xff0c;滚动到页面的下面&#xff0c;找到源码量最大的那个&#xff08;其它的估计也行&#xff0c;但源码最大的本人感觉功能最全&#…

【LeetCode-剑指offer】-- 25.两数相加II

25.两数相加II 方法&#xff1a;栈 /*** Definition for singly-linked list.* public class ListNode {* int val;* ListNode next;* ListNode() {}* ListNode(int val) { this.val val; }* ListNode(int val, ListNode next) { this.val val; this.ne…

【详解】求解迷宫所有路径(递归实现)----直接打穿迷宫

目录 递归的模型&#xff1a; 栈帧&#xff1a; 递归调用深度&#xff1a; ​编辑 用递归算法求解迷宫问题&#xff1a; 小结&#xff1a; 结语&#xff1a; 递归的小小总结&#xff0c;朋友们可以看看&#xff0c;有助于理解后面的递归程序。 递归的模型&#xff1a; …

Python如何求解最长公共子序列

Python-求解两个字符串的最长公共子序列 一、问题描述 给定两个字符串&#xff0c;求解这两个字符串的最长公共子序列&#xff08;Longest Common Sequence&#xff09;。比如字符串1&#xff1a;BDCABA&#xff1b;字符串2&#xff1a;ABCBDAB。则这两个字符串的最长公共子序…

第14课 利用openCV快速数豆豆

除了检测运动&#xff0c;openCV还能做许多有趣且实用的事情。其实openCV和FFmpeg一样都是宝藏开源项目&#xff0c;貌似简单的几行代码功能实现背后其实是复杂的算法在支撑。有志于深入学习的同学可以在入门后进一步研究算法的实现&#xff0c;一定会受益匪浅。 这节课&#…