详细平稳解

1.详细平衡

定义:一个在高斯白噪声激励下的动力学系统在状态空间中如果用如下运动方程描述:
d d t X j \frac{d}{dt}\mathbf{X}_{j} dtdXj= f j ( X ) f_{j}(\mathbf{X}) fj(X)+ ∑ l = 1 m g j l ( X ) W l ( t ) \sum_{l=1}^{m}g_{jl}(\mathbf{X})W_{l}(t) l=1mgjl(X)Wl(t),j=1,2,…n
它一般不属于平稳势类。为满足FPK方程,可将一阶导数矩分成如下两个部分:
a j ( x ) = a j R ( x ) + a j I ( x ) a_{j}(\mathbf{x})=a_{j}^{R}(\mathbf{x})+a_{j}^{I}(\mathbf{x}) aj(x)=ajR(x)+ajI(x)
其中, a j R ( x ) a_{j}^{R}(\mathbf{x}) ajR(x)为可逆分量, a j I ( x ) a_{j}^{I}(\mathbf{x}) ajI(x)为不可逆分量。不可逆部分和阻尼力相应,可逆部分与惯性力和恢复力相应 (对于拉格朗日提法和哈密顿提法也是如此)

补充:维纳过程和高斯白噪声之间的关系

考虑方程 d X ( t ) d t = W ( t ) , X ( 0 ) = 0 \frac{dX(t)}{dt}=W(t),X(0)=0 dtdX(t)=W(t),X(0)=0其中, W ( t ) W(t) W(t)是谱密度为 K K K的高斯白噪声,即 E [ W ( t ) ] = 0 , E [ W ( t ) W ( t + τ ) ] = 2 π K δ ( τ ) . E[W(t)]=0,E[W(t)W(t+\tau)]=2\pi K\delta(\tau). E[W(t)]=0E[W(t)W(t+τ)]=2π(τ).
按维纳过程的定义, X ( t ) X(t) X(t)是维纳过程,则 d B ( t ) d t = W ( t ) . ( ∗ ) \frac{dB(t)}{dt}=W(t).(*) dtdB(t)=W(t).()而维纳过程的强度 σ 2 \sigma^{2} σ2与高斯白噪声的谱密度之间的关系为 σ 2 = 2 π K . \sigma^{2}=2\pi K. σ2=2πK.
这里的(*)式只是一种形式上的关系,因为维纳过程 B ( t ) B(t) B(t) L 2 L_{2} L2意义上不可微。
作为最简单的马尔可夫扩散过程,维纳过程 B ( t ) B(t) B(t)可以通过随机微分方程用于构造其他马尔可夫过程,一个标量马尔可夫扩散过程可由下式产生: d X ( t ) = m ( X , t ) d t + σ ( X , t ) d B ( t ) dX(t)=m(X,t)dt+\sigma(X,t)dB(t) dX(t)=m(X,t)dt+σ(X,t)dB(t),其中 B ( t ) B(t) B(t)是单位维纳过程,即
E [ B ( t 1 ) B ( t 2 ) ] = m i n ( t 1 , t 2 ) , E [ d B ( t 1 ) d B ( t 2 ) ] = { 0 , t 1 ≠ t 2 d t , t 1 = t 2 = t E[B(t_{1})B(t_{2})]=min(t_{1},t_{2}),E[dB(t_{1})dB(t_{2})]=\left\{\begin{matrix} 0, &t_{1}\neq t_{2} \\ dt, &t_{1}=t_{2}=t \end{matrix}\right. E[B(t1)B(t2)]=min(t1,t2),E[dB(t1)dB(t2)]={0,dt,t1=t2t1=t2=t

2.以下举例说明:

2.1外激单自由度系统

考虑系统 X ¨ + h ( Λ ) X ˙ + u ( X ) = W ( t ) \mathbf{\ddot{X} }+h(\Lambda)\mathbf{\dot{X}}+u(\mathbf{X})=W(t) X¨+h(Λ)X˙+u(X)=W(t),式中 u ( X ) u(\mathbf{X}) u(X)是恢复力, W ( t ) W(t) W(t)是谱密度为 K K K的高斯白噪声, Λ \Lambda Λ是系统的总能量,也就是 Λ = 1 2 X ˙ 2 + ∫ 0 X u ( z ) d z . \Lambda=\frac{1}{2}\mathbf{\dot{X}}^{2}+ \int_{0}^{X}u(z)dz. Λ=21X˙2+0Xu(z)dz.
自然地,我们可以知道阻尼力为 X ˙ \mathbf{\dot{X}} X˙对应部分,惯性力和恢复力为 u ( X ) u(\mathbf{X}) u(X)

首先,我们得到系统对应的伊藤方程(令 X 1 = X \mathbf{X_{1}}=\mathbf{X} X1=X X 2 = X ˙ \mathbf{X_{2}}=\mathbf{\dot{X}} X2=X˙):
d X 1 = X 2 d t d X 2 = − [ h ( Λ ) X 2 + u ( X 1 ) ] d t + 2 π K d B ( t ) . d\mathbf{X_{1}}=\mathbf{X_{2}}dt\\ d\mathbf{X_{2}}=-[h(\Lambda)\mathbf{X_{2}}+u(\mathbf{X_{1}})]dt+\sqrt{2\pi K}dB(t). dX1=X2dtdX2=[h(Λ)X2+u(X1)]dt+2πK dB(t).
对于这里 d B ( t ) = W ( t ) d t dB(t)=W(t)dt dB(t)=W(t)dt,由于把普通随机微分方程转化成了伊藤随机微分方程,故按对于的规则,得到上式; σ ( X , t ) d B ( t ) = 2 π K d B ( t ) \sigma(X,t)dB(t)=\sqrt{2\pi K}dB(t) σ(X,t)dB(t)=2πK dB(t).

由此得到一、二阶导数矩:
a 1 = x 2 , a 2 = − h ( λ ) x 2 − u ( x 1 ) , b 11 = b 12 = b 21 = 0 , b 22 = 2 π K a_{1}=x_{2},a_{2}=-h(\lambda)x_{2}-u(x_{1}),b_{11}=b_{12}=b_{21}=0,b_{22}=2\pi K a1=x2,a2=h(λ)x2u(x1),b11=b12=b21=0,b22=2πK
其中可逆部分:
a 1 R = x 2 , a 2 R = − u ( x 1 ) a_{1}^{R}=x_{2},a_{2}^{R}=-u(x_{1}) a1R=x2,a2R=u(x1)
不可逆部分:
a 1 I = 0 , a 2 I = − h ( λ ) x 2 a_{1}^{I}=0,a_{2}^{I}=-h(\lambda)x_{2} a1I=0,a2I=h(λ)x2
将上式带入 a j I = 1 2 ∑ k = 1 n [ ∂ ∂ x k b j k ( x ) − b j k ( x ) ∂ ϕ ∂ x k ] , ∑ j = 1 n ∂ ∂ x j a j R ( x ) = ∑ j = 1 n a j R ( x ) ∂ ϕ ∂ x j . a_{j}^{I}=\frac{1}{2}\sum_{k=1}^{n}[\frac{\partial }{\partial x_{k}}b_{jk}(x)-b_{jk}(x)\frac{\partial \phi}{\partial x_{k}}],\\ \sum_{j=1}^{n}\frac{\partial }{\partial x_{j}}a_{j}^{R}(x)=\sum_{j=1}^{n}a_{j}^{R}(x)\frac{\partial \phi}{\partial x_{j}}. ajI=21k=1n[xkbjk(x)bjk(x)xkϕ],j=1nxjajR(x)=j=1najR(x)xjϕ.
(若系统属于详细平衡类,则存在一个 ϕ ( x ) \phi(x) ϕ(x)满足所有这些方程。)
得到, π K ∂ ϕ ∂ x 2 = − h ( λ ) x 2 , ( 1 ) x 2 ∂ ϕ ∂ x 1 = u ( x 1 ) ∂ ϕ ∂ x 2 . ( 2 ) \pi K \frac{\partial\phi}{\partial x_{2}}=-h(\lambda)x_{2},(1)\\ x_{2}\frac{\partial\phi}{\partial x_{1}}=u(x_{1})\frac{\partial \phi}{\partial x_{2}}.(2) πKx2ϕ=h(λ)x2,(1)x2x1ϕ=u(x1)x2ϕ.(2)
解(1)式:
请添加图片描述
带入(2)式,发现 g ( x 1 ) g(x_{1}) g(x1)必为常数,又对于一个系统属于平稳势类则其平稳概率密度表示为: p ( x ) = C e x p [ − ϕ ( x ) ] p(x)=Cexp[-\phi(x)] p(x)=Cexp[ϕ(x)]其中,C为归一化常数,于是
p ( x 1 , x 2 ) = C e x p [ − 1 π K ∫ 0 λ h ( z ) d z ] , λ = 1 2 x 2 2 + ∫ 0 x 1 u ( z ) d z . p(x_{1},x_{2})=Cexp[-\frac{1}{\pi K}\int_{0}^{\lambda} h(z)dz],\lambda=\frac{1}{2}x_{2}^{2}+\int_{0}^{x_{1}}u(z)dz. p(x1,x2)=Cexp[πK10λh(z)dz],λ=21x22+0x1u(z)dz.

故对于受外激作用的单自由度系统属于详细平衡类.
特别地,对于线性阻尼力情形: h ( Λ ) X ˙ = α X ˙ h(\Lambda)\dot{X}=\alpha \dot{X} h(Λ)X˙=αX˙, p ( x 1 , x 2 ) = C e x p { − α π K [ ∫ 0 x 1 u ( z ) d z + 1 2 x 2 2 ] } . p(x_{1},x_{2})=Cexp\{-\frac{\alpha}{\pi K}[\int_{0}^{x_{1}}u(z)dz+\frac{1}{2}x_{2}^{2}]\}. p(x1,x2)=Cexp{πKα[0x1u(z)dz+21x22]}.

2.2同受外激和参激的单自由度系统

补充:外激(施加在系统上的外力或外部扰动)参激(系统内部的反馈信号或参数输入)
X ¨ + ( α + β X 2 ) X ˙ + ω 0 2 X = X W 1 ( t ) + W 2 ( t ) \ddot{X}+(\alpha+\beta X^{2})\dot{X}+\omega_{0}^{2}X=XW_{1}(t)+W_{2}(t) X¨+(α+βX2)X˙+ω02X=XW1(t)+W2(t)
其中 W 1 ( t ) W_{1}(t) W1(t) W 2 ( t ) W_{2}(t) W2(t)是谱密度分别为 K 11 K_{11} K11 K 22 K_{22} K22的独立高斯白噪声,以 X 1 X_{1} X1 X X X X 2 X_{2} X2 X ˙ \dot{X} X˙,则对于的伊藤方程:
d X 1 = X 2 d t d X 2 = − [ ( α + β X 1 2 ) X 2 + ω 0 2 X 1 ] d t + 2 π ( K 11 X 1 2 + K 22 ) d B ( t ) dX_{1}=X_{2}dt\\ dX_{2}=-[(\alpha+\beta X_{1}^{2})X_{2}+\omega_{0}^{2}X_{1}]dt+\sqrt{2 \pi (K_{11}X_{1}^{2}+K_{22})}dB(t) dX1=X2dtdX2=[(α+βX12)X2+ω02X1]dt+2π(K11X12+K22) dB(t)

请添加图片描述
请添加图片描述

可以看到这里系统属于详细平衡解需要满足 α β = K 22 K 11 \frac{\alpha}{\beta}=\frac{K_{22}}{K_{11}} βα=K11K22

ps:可能会补充更新,仅供自己学习使用,对于其他形式的系统可作类似推导,都是书中原例。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/327032.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Multisim各版本安装指南

Multisim下载链接 https://pan.baidu.com/s/1En9uUKafhGOqo57V5rY9dA?pwd0531 1.鼠标右击【Multisim 14.3(64bit)】压缩包(win11及以上统需先点击“显示更多选项”)选择【解压到 Multisim 14.3(64bit)】。 2.打开解压后的文件夹,双击打开【…

Nacos与Eureka

一、前言 在构建和管理微服务架构时,选择适当的服务注册中心至关重要。Nacos和Eureka都是微服务体系结构中常用的服务注册和发现工具。本文将探讨它们之间的区别,帮助开发者在选择适合其项目需求的注册中心时做出明智的决策。 二、架构和适用场景 Nacos …

[嵌入式C][入门篇] 快速掌握基础2 (数据类型、常量、变量)

开发环境: 网页版:跳转本地开发(Vscode):跳转 文章目录 一、基本变量大小和范围(1)在8位/32位单⽚机中:测试代码结果:64位机器结果:32位机器(单片机)无对齐限…

超实用的测试万能法则 —— 帕累托分析!

20/80原则来源于意大利经济学家维弗雷多•帕累托(Villefredo Pareto)提出的财富占比帕累托原则:80%的财富是掌握在20%的人手中的,而余下的80%的人只占那剩余的20%财富,而后这个理论延伸为:至关重要的少数和…

程序员副业之无人直播助眠

介绍和概览 大家好,我是小黑,本文给大家介绍一个比较轻松简单的副业,无人直播助眠副业。 这个项目的核心就是通过直播一些助眠素材来赚钱。比如你可以放一些舒缓的雨声之类的,吸引观众进来。然后,咱们可以挂个小程序…

案例分析——如何优化跨境直播网络

跨境直播 风口已至 这些年越来越多商家加入直播带货行列,各种玩法日渐成熟。而TikTok作为当前国外最火爆的直播平台,不少卖家都会定期做TikTok直播引流,但时常会面临着远程访问导致直播画面模糊、卡顿掉线、延迟高,甚至可能限流黑…

YOLOv5改进 | Neck篇 | 利用Damo-YOLO的RepGFPN改进特征融合层

一、本文介绍 本文给大家带来的改进机制是Damo-YOLO的RepGFPN(重参数化泛化特征金字塔网络),利用其优化YOLOv5的Neck部分,可以在不影响计算量的同时大幅度涨点(亲测在小目标和大目标检测的数据集上效果均表现良好涨点幅度超级高!)。RepGFPN不同于以往提出的改进模块,其…

剧本杀小程序/APP搭建,增加玩家游戏体验

近年来,剧本杀游戏成为了年轻人娱乐的新方式,受到了年轻人的追捧。 剧本杀是一种新型的社交游戏,在游戏中,玩家不仅可以进行角色扮演,也能够交到好友,符合当下年轻人的生活模式。 小程序、app是当下剧本杀…

刚学C/C++,使用的是CLion,想要在同一个项目里面运行多个相互独立脚本?

前言: 正常来说,一般一个项目只会有一个程序入口点。C和C程序的入口点是main函数。在一个项目中,只能有一个main函数,否则编译器会不知道从哪个main函数开始执行。 但是,作为初学者,我就是想用CLio…

TMC4671闭环调试步进、伺服、音圈、永磁、无刷电机

一、IDE 连接开发板 下 面 讲 解 IDE 和 开 发 板 连 接 的 详 细 操 作 。 这 里 我 们 选 择 用 主 控 板 TMC671-EVALTMC6200-EVAL 开发板做讲解。其它型号的开发板也是大同小异 的操作步骤。 1.首先我连接好开发板,并给开发板上电 连接好的开发板如下…

bootstrap5实现宠物商店网站 Cat-Master

一、需求分析 宠物商店网站是指专门为宠物商店或宠物用品商家而建立的在线平台。这种网站的功能通常旨在提供以下服务: 产品展示:宠物商店网站通常会展示宠物食品、玩具、床上用品、健康护理产品等各种宠物用品的图片和详细信息。这样,潜在的…

JAVA中小型医院信息管理系统源码 医院系统源码

开发框架:SpringBootJpathymeleaf 搭建环境:jdk1.8idea/eclipsemaven3mysql5.6 基于SpringBoot的中小型医院信息管理系统,做的比较粗糙,但也实现了部分核心功能。 就诊卡提供了手动和读卡两种方式录入,其中IC读卡器使用…