【BIAI】lecture 3 - GD BP CNN Hands-on

GD & BP & CNN & Hands-on

专业术语

gradient descent (GD) 梯度下降
back propagation (BP) 向传播
Convolutional Neural Network (CNN) 卷积神经网络
forward propagation 前向传播
biologically symmetry 生物对称性
synaptic 突触
axon 轴突

课程大纲

在这里插入图片描述

The goal of AI: minimize the loss function

AI的任务目标就是解决优化函数,找到使得损失函数最小的参数 θ \theta θ在这里插入图片描述

Q: 什么是GD?
A: 梯度下降是一种优化算法,用于最小化或最大化目标函数。在神经网络中,我们通常希望最小化损失函数,以便使网络的预测结果与实际结果更接近。梯度下降通过迭代地更新网络参数来逐步调整模型,使损失函数逐渐减小

使用线性回归举例说明如何实现这个目标
如下图,线性回归模型y= β \beta βx,参数是 β \beta β,损失函数L( β \beta β)。
可以直接求出二次函数的最小值,如下图中(b)所示,也可以使用GD求出最小值。
在这里插入图片描述
当参数很多的时候,依旧可以使用GD,比如有两个参数,最开始初始化 θ \theta θ θ 0 {\theta}^0 θ0第一次GD:先对 θ 0 {\theta}^0 θ0求偏导,即对 θ 0 {\theta}^0 θ0中的两个参数分别求偏导,然后乘上学习率 η \eta η,得到的值用 ▽ L ( θ ) {\bigtriangledown}L(\theta) L(θ)表示, θ 0 {\theta}^0 θ0- ▽ L ( θ ) {\bigtriangledown}L(\theta) L(θ)便得到 θ 1 {\theta}^1 θ1 。一直不断地GD,直到L收敛,便找使得L最小的 θ {\theta} θ
在这里插入图片描述

Gradient Descent to train Neural networks

在神经网络中,往往有上亿个参数,如果使用GD,每一次计算,都会有上亿个参数需要做GD,那如果要做到L收敛,GD的计算量是非常大的。所以,我们借助反向传播来解决问题。
在这里插入图片描述

Q: 直接使用梯度下降有什么问题?
A:

  • 参数数量庞大:神经网络通常有大量的参数,特别是在深度神经网络中。如果直接计算每个参数对于损失函数的梯度,将需要非常大的计算开销和存储空间。
  • 计算效率:在计算梯度时,需要通过前向传播计算网络的输出,然后通过反向传播计算每个参数对于损失函数的梯度。直接通过数值计算梯度需要执行大量的重复计算,效率较低。

BG

反向传播解决了这些问题,并提供了一种高效计算梯度的方法。通过使用链式法则,反向传播可以将梯度从输出层向输入层传播,利用相同的前向传播过程中计算的中间结果,避免了重复计算。这样可以大大减少计算开销,并使得神经网络的训练更加高效。

关于为什么反向传播可以利用前向传播的计算结果,大家可以参考这篇博客:深度学习——P13 Backpropagation,是李宏毅课程内容的笔记,大家也可去看李宏毅深度学习课程视频。

最后总结一下反向传播,如下图所示,在GD中是计算 L L L w w w的偏导(等同于上文的 θ \theta θ,在反向传播中转化为 L L L z z z求偏导乘以 z z z w w w求偏导 z z z w w w的偏导结果其实就是前项传播中计算的每一层输入,因为 z = w 1 x 1 + w 2 x 2 z=w_1x_1+w_2x_2 z=w1x1+w2x2,所以对 w w w求偏导,就得到 x 1 x_1 x1 x 2 x_2 x2。这在前项传播中计算得到,不用再次计算。而 L L L z z z的偏导的计算也比较好算,因为 L L L的公式给出了,只需要根据公式计算就行,并且是一阶函数求导,这样大大简化了计算量。

在这里插入图片描述

Backpropagation (BP) in the Brain?

大脑是使用反向传播算法去学习?现在没有直接的证据证明。
在大脑中实施BP有几个困难:
在这里插入图片描述

The Architecture of CNN

这部分大家可以直接看李宏毅老师的课程,也可以参考这篇博客——【李宏毅】深度学习-CNN(影像辨识为例)

Hands-on

自己手动建立CNN网络,使用CNN实现EEG降噪。输入:原始神经信号,输出:降噪后的神经信号。
在这里插入图片描述

因为有时候采集的EEG信号存在噪声,我们可以使用神经网络来降噪,怎么做到呢?我们有许多的原始的EEG信号和这些信号降噪后的数据(label),将原始的EEG信号输入model,输出的结果和label计算loss,然后进行BP,这样我们的model就能够拟合出一个合适的参数,使得model的输出和label的差距最小,从而在训练结束后,我们可以使用这个model处理我们的数据进行降噪。

代码实现

首先,调包并读取数据
在这里插入图片描述
然后构建CNN
在这里插入图片描述开始训练
在这里插入图片描述
训练结果可视化
在这里插入图片描述
结果
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/328160.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

RPC学习

RPC 远程过程调用 服务提供者 将服务提供到注册中心&#xff0c;消费者从注册中心获取需要i调用的服务&#xff0c;去进行调用 模块创建 消费者&#xff08;Consumer&#xff09; ** pom ** <?xml version"1.0" encoding"UTF-8"?> <project …

【萤火虫系列教程】2/5-Adobe Firefly 文字​生成​图像

文字​生成​图像 登录账号后&#xff0c;在主页点击文字生成图像的【生成】按钮&#xff0c;进入到文字生成图像 查看图像 在文字生成图像页面&#xff0c;可以看到别人生成的图像。 点击某个图像&#xff0c;就可以进入图像详情&#xff0c;可以看到文字描述。 生成图像 我…

Socket与TCP的关系

前言 相信大家对于TCP已经非常熟悉了&#xff0c;学习过计算机网络的同学对于它的连接和断开流程应该已经烂熟于心了吧。 那么Socket是什么&#xff1f; Socket是应用层与TCP/IP协议簇通信的中间软件抽象层&#xff0c;它是一组接口。在设计模式中&#xff0c;Socket其实就是…

python 写自动点击爬取数据

今天来点不一样的&#xff01;哥们 提示&#xff1a; 这里只是用于自己学习的 &#xff0c;请勿用违法地方 效果图 会进行点击下一页 进行抓取 需要其他操作也可以自己写 文章目录 今天来点不一样的&#xff01;哥们前言一、上代码&#xff1f;总结 前言 爬虫是指通过编程自动…

基于Java实现全功能电子商城

&#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩项目推荐订阅&#x1f447;&#x1f3fb; 不然下次找不到哟 基于SpringBoot的旅游网站 基于SpringBoot的MusiQ音乐网站 感兴趣的可以先收藏起来&#xff0c;还有大家在毕设选题&#xff0c;项目以及…

嵌入式培训机构四个月实训课程笔记(完整版)-Linux系统编程第四天-Linux管道练习题(物联技术666)

更多配套资料CSDN地址:点赞+关注,功德无量。更多配套资料,欢迎私信。 物联技术666_嵌入式C语言开发,嵌入式硬件,嵌入式培训笔记-CSDN博客物联技术666擅长嵌入式C语言开发,嵌入式硬件,嵌入式培训笔记,等方面的知识,物联技术666关注机器学习,arm开发,物联网,嵌入式硬件,单片机…

基础面试题整理2

1.抽象类与接口区别 语法&#xff1a; 抽象类用abstract定义&#xff1b;接口用interface定义抽象类被子类继承extends&#xff08;不可用final修饰&#xff09;&#xff1b;接口被类实现implements抽象类的属性访问无限制,方法不可用private修饰&#xff1b;接口中的方法只能…

性能分析与调优: Linux 使用ELRepo升级CentOS内核

目录 一、实验 1.环境 2.agent 服务器使用ELRepo升级CentOS内核 二、问题 1. RHEL-7, SL-7 或者 CentOS-7系统如何安装ELRepo 2.RHEL-8或者RHEL-9系统如何安装ELRepo 一、实验 1.环境 &#xff08;1&#xff09;主机 表1-1 主机 主机架构组件IP备注prometheus 监测 系…

【uniapp】APP打包上架应用商-注意事项

初雪云-uniapp启动图自定义生成&#xff08;支持一键生成storyboard&#xff09; 一、修改App端上传图片/视频 uni.uploadFile let thatthis; uni.chooseImage({count: 1,sourceType: [camera,album],sizeType: [compressed, original],success: rey > {uni.showLoading({ t…

欢乐钓鱼^^

欢迎来到程序小院 欢乐钓鱼 玩法&#xff1a;点击鼠标左键左右晃动的鱼钩&#xff0c;下方左右移动的鱼对准鱼的方向即可进行钓鱼&#xff0c; 不同的鱼不同的分数&#xff0c;快去钓鱼吧^^开始游戏https://www.ormcc.com/play/gameStart/241 html <div id"gamediv&qu…

【深度学习:Embeddings 】机器学习中Embeddings的完整指南

人工智能嵌入提供了生成优质训练数据的潜力&#xff0c;提高了数据质量并最大限度地减少了手动标记要求。通过将输入数据转换为机器可读的格式&#xff0c;企业可以利用人工智能技术来转变工作流程、简化流程并优化性能。 机器学习是一种强大的工具&#xff0c;有潜力改变我们…

时钟的实现(MFC)

文章目录 1.预备知识1.日期和时间类1.概述2.构造3.CTime类主要成员函数3.CTimeSpan类主要成员函数 2.计时器1.创建计时器2.销毁计时器 3.位图类1.构造2.初始化3.属性4.操作 2.实验目的3.实验内容4.代码实现1.准备工作2.基类CClockBaseClockBase.hClockBase.cpp 3.时钟背景类CCl…