车辆运动学方程推导和代码实现

文章目录

    • 1. 运动学方程
    • 2. 模型实现

1. 运动学方程

自行车模型(Bicycle Model)是车辆数字化模型中最常见的一种运动学模型。其除了可以反映车辆的一些基础特性外,更重要的是简单易用。通常情况下我们会把车辆模型简化为二自由度的自行车模型。

自行车模型主要基于以下假设:

  • 车辆是在一个二维平面上运动,不考虑车辆垂直平面的(Z轴)方向上的移动。
  • 车辆左右两个轮胎的运动可以合并为一个轮胎来描述,即假设车辆左右轮胎在任意时刻都拥有相同(或者近乎相同)的转向角度和速度。
  • 车辆处于低速运动,可以忽略前后轴载荷的偏移。
  • 车辆整体是刚体结构。

一般情况下,我们可以将车辆运动学模型简化为如下形式:

在这里插入图片描述

  • δ f \delta_f δf:前轮转角
  • δ r \delta_r δr:后轮转角
  • β \beta β:质心侧偏角,即质心速度与车身坐标系 X X X轴的夹角
  • φ \varphi φ:横摆角,即车的轴线与 X X X轴的夹角
  • β + φ \beta+\varphi β+φ:航向角
  • v v v:质心速度
  • O O O:速度瞬心
  • C C C:质心
  • L f L_f Lf:质心 C C C到前轴距离
  • L r L_r Lr:质心 C C C到后轴距离
  • L L L:轴距, L = L f + L r L=L_f+L_r L=Lf+Lr

我们对质心速度 v v v进行矢量分解,如上图中的 X ˙ \dot{X} X˙ Y ˙ \dot{Y} Y˙所示,可以得到下式子 ( 1 ) (1) (1) ( 2 ) (2) (2),根据理论力学刚体角速度公式可得公式 ( 3 ) (3) (3)。由此得到单车模型下的车辆运动学微分模型为
X ˙ = v c o s ( β + φ ) (1) \dot{X} = vcos(\beta+\varphi) \tag{1} X˙=vcos(β+φ)(1)

Y ˙ = v s i n ( β + φ ) (2) \dot{Y} = vsin(\beta+\varphi) \tag{2} Y˙=vsin(β+φ)(2)

φ ˙ = v R (3) \dot{\varphi} = \frac{v}{R} \tag{3} φ˙=Rv(3)

:一个刚体的角速度 = 线速度/线速度到速度瞬心的距离

根据图中几何关系和正弦定理可知:
L f s i n ( δ f − β ) = R s i n ( π 2 − δ f ) (4) \frac{L_f}{sin(\delta_f - \beta)} = \frac{R}{sin(\frac{\pi}{2} - \delta_f)} \tag{4} sin(δfβ)Lf=sin(2πδf)R(4)

L r s i n ( δ r + β ) = R s i n ( π 2 − δ r ) (5) \frac{L_r}{sin(\delta_r + \beta)} = \frac{R}{sin(\frac{\pi}{2} - \delta_r)} \tag{5} sin(δr+β)Lr=sin(2πδr)R(5)

由上式展开可得
L f R = s i n δ f c o s β − c o s δ f s i n β c o s δ f = t a n δ f c o s β − s i n β (6) \frac{L_f}{R} = \frac{sin\delta_f cos\beta - cos\delta_f sin\beta}{cos\delta_f} = tan\delta_fcos\beta - sin\beta\tag{6} RLf=cosδfsinδfcosβcosδfsinβ=tanδfcosβsinβ(6)

L r R = s i n δ r c o s β + c o s δ r s i n β c o s δ r = t a n δ r c o s β + s i n β (7) \frac{L_r}{R} = \frac{sin\delta_r cos\beta + cos\delta_r sin\beta}{cos\delta_r} = tan\delta_rcos\beta+sin\beta \tag{7} RLr=cosδrsinδrcosβ+cosδrsinβ=tanδrcosβ+sinβ(7)

由载荷的影响,质心 C C C位置会发生变化,导致 L f L_f Lf L r L_r Lr的长度发生变化,但是由于 L = l f + L r L = l_f +L_r L=lf+Lr是不变的,因此由式子 ( 6 ) ( 7 ) (6)(7) (6)(7)可得
L f + L r R = L R = ( t a n δ f + t a n δ r ) c o s β (8) \frac{L_f + L_r}{R} = \frac{L}{R} = (tan\delta_f + tan\delta_r)cos\beta \tag{8} RLf+Lr=RL=(tanδf+tanδr)cosβ(8)
( 3 ) (3) (3) ( 8 ) (8) (8)可得
φ ˙ = v R = v ( t a n δ f + t a n δ r ) c o s β L (9) \dot{\varphi} = \frac{v}{R} =\frac{v(tan\delta_f + tan\delta_r)cos\beta}{L} \tag{9} φ˙=Rv=Lv(tanδf+tanδr)cosβ(9)
由于低速条件下,我们可以假设车辆不会发生侧向滑动(漂移),此时我们可以将 v y ≈ 0 v_y \approx 0 vy0,因此 β ≈ 0 \beta \approx 0 β0,则横摆角 φ \varphi φ约等于航向角 φ + β \varphi + \beta φ+β 。又由于大部分车辆不具备后轮转向的功能,因此我们可以假设后轮转角 δ r ≈ 0 \delta_r\approx0 δr0,因此基于我们假设的前提下的运动学微分方程化简为
X ˙ = v c o s φ Y ˙ = v s i n φ φ ˙ = v t a n δ f L (10) \dot{X} = vcos\varphi \\ \dot{Y} = vsin\varphi \tag{10} \\ \dot{\varphi} = \frac{vtan\delta_f}{L} X˙=vcosφY˙=vsinφφ˙=Lvtanδf(10)

2. 模型实现

python代码如下:

#!/usr/bin/python
# -*- coding: UTF-8 -*-import math
import matplotlib.pyplot as plt
import numpy as np
from celluloid import Cameraclass Vehicle:def __init__(self,x=0.0,y=0.0,yaw=0.0,v=0.0,dt=0.1,l=3.0):self.steer = 0self.x = xself.y = yself.yaw = yawself.v = vself.dt = dtself.L = l  # 轴距self.x_front = x + l * math.cos(yaw)self.y_front = y + l * math.sin(yaw)def update(self, a, delta, max_steer=np.pi):delta = np.clip(delta, -max_steer, max_steer)self.steer = deltaself.x = self.x + self.v * math.cos(self.yaw) * self.dtself.y = self.y + self.v * math.sin(self.yaw) * self.dtself.yaw = self.yaw + self.v / self.L * math.tan(delta) * self.dtself.v = self.v + a * self.dtself.x_front = self.x + self.L * math.cos(self.yaw)self.y_front = self.y + self.L * math.sin(self.yaw)class VehicleInfo:# Vehicle parameterL = 3.0  #轴距W = 2.0  #宽度LF = 3.8  #后轴中心到车头距离LB = 0.8  #后轴中心到车尾距离MAX_STEER = 0.6  # 最大前轮转角TR = 0.5  # 轮子半径TW = 0.5  # 轮子宽度WD = W  #轮距LENGTH = LB + LF  # 车辆长度def draw_trailer(x, y, yaw, steer, ax, vehicle_info=VehicleInfo, color='black'):vehicle_outline = np.array([[-vehicle_info.LB, vehicle_info.LF, vehicle_info.LF, -vehicle_info.LB, -vehicle_info.LB],[vehicle_info.W / 2, vehicle_info.W / 2, -vehicle_info.W / 2, -vehicle_info.W / 2, vehicle_info.W / 2]])wheel = np.array([[-vehicle_info.TR, vehicle_info.TR, vehicle_info.TR, -vehicle_info.TR, -vehicle_info.TR],[vehicle_info.TW / 2, vehicle_info.TW / 2, -vehicle_info.TW / 2, -vehicle_info.TW / 2, vehicle_info.TW / 2]])rr_wheel = wheel.copy() #右后轮rl_wheel = wheel.copy() #左后轮fr_wheel = wheel.copy() #右前轮fl_wheel = wheel.copy() #左前轮rr_wheel[1,:] += vehicle_info.WD/2rl_wheel[1,:] -= vehicle_info.WD/2#方向盘旋转rot1 = np.array([[np.cos(steer), -np.sin(steer)],[np.sin(steer), np.cos(steer)]])#yaw旋转矩阵rot2 = np.array([[np.cos(yaw), -np.sin(yaw)],[np.sin(yaw), np.cos(yaw)]])fr_wheel = np.dot(rot1, fr_wheel)fl_wheel = np.dot(rot1, fl_wheel)fr_wheel += np.array([[vehicle_info.L], [-vehicle_info.WD / 2]])fl_wheel += np.array([[vehicle_info.L], [vehicle_info.WD / 2]])fr_wheel = np.dot(rot2, fr_wheel)fr_wheel[0, :] += xfr_wheel[1, :] += yfl_wheel = np.dot(rot2, fl_wheel)fl_wheel[0, :] += xfl_wheel[1, :] += yrr_wheel = np.dot(rot2, rr_wheel)rr_wheel[0, :] += xrr_wheel[1, :] += yrl_wheel = np.dot(rot2, rl_wheel)rl_wheel[0, :] += xrl_wheel[1, :] += yvehicle_outline = np.dot(rot2, vehicle_outline)vehicle_outline[0, :] += xvehicle_outline[1, :] += yax.plot(fr_wheel[0, :], fr_wheel[1, :], color)ax.plot(rr_wheel[0, :], rr_wheel[1, :], color)ax.plot(fl_wheel[0, :], fl_wheel[1, :], color)ax.plot(rl_wheel[0, :], rl_wheel[1, :], color)ax.plot(vehicle_outline[0, :], vehicle_outline[1, :], color)# ax.axis('equal')if __name__ == "__main__":vehicle = Vehicle(x=0.0,y=0.0,yaw=0,v=0.0,dt=0.1,l=VehicleInfo.L)vehicle.v = 1trajectory_x = []trajectory_y = []fig = plt.figure()# 保存动图用# camera = Camera(fig)for i in range(600):plt.cla()plt.gca().set_aspect('equal', adjustable='box')vehicle.update(0, np.pi / 10)draw_trailer(vehicle.x, vehicle.y, vehicle.yaw, vehicle.steer, plt)trajectory_x.append(vehicle.x)trajectory_y.append(vehicle.y)plt.plot(trajectory_x, trajectory_y, 'blue')plt.xlim(-12, 12)plt.ylim(-2.5, 21)plt.pause(0.001)#     camera.snap()# animation = camera.animate(interval=5)# animation.save('trajectory.gif')

运行结果如下:

在这里插入图片描述

文章首发公众号:iDoitnow如果喜欢话,可以关注一下

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/329749.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

源码编译部署篇(二)源码编译milvus成功后如何启动standalone并调试成功!

Milvus启动和调试 0 前言1 Milvus启动【问题描述】出现Aborted问题【问题分析】【解决方法】安装Pulsar服务执行单机启动命令解决监听端口号 2 Milvus调试编写launch.json验证单例调试成功 3 遇到的问题汇总问题1问题2:Permission denied 0 前言 由于Milvus官方文档只提及如何…

Windows:笔记本电脑设置休眠教程

前言 不知道大家在使用【Windows】笔记本有没有这个习惯,我会把他的电池选项的【休眠】设置进行打开。因为作为我们开发人员电脑一般是一周关一次机,有时候一个月关一次机。这时候【休眠】功能就给我们提供了一个好处,我们选择了【休眠】后电…

web期末作业网页设计——JavaScript

目录 一.作品简介 二.网页效果 首页 花语 登录界面 注册界面 三.网页代码 首页 登录界面 注册界面 视频界面 一.作品简介 网站系统文件种类包含:html网页结构文件、css网页样式文件、js网页特效文件、images网页图片文件。 网页作品代码简单&#xff…

书生·浦语大模型实战营 Lesson 1

书生浦语大模型全链路开源体系 书生浦语大模型开源历程 书生浦语大模型系列 从模型到应用 数据 预训练 微调 部署

如何写html邮件 —— 参考主流outook、gmail、qq邮箱渲染邮件过程

文章目录 ⭐前言⭐outlook渲染邮件⭐gmail邮箱渲染邮件⭐qq邮箱渲染邮件 ⭐编写html邮件💖table表格的属性💖文本💖图片💖按钮💖背景图片 ⭐总结⭐结束 ⭐前言 大家好,我是yma16,本文分享关于 …

Android WiFi 连接

Android WiFi 连接 1、设置中WiFi显示2、WiFi 连接流程2.1 获取PrimaryClientModeManager2.2 ClientModeImpl状态机ConnectableState2.3 ISupplicantStaNetworkCallback 回调监听 3、 简要时序图4、原生低层驱动5、关键日志 1、设置中WiFi显示 Android WiFi基础概览 packages/a…

mybatisPlus CodeGenerator 代码生成

在 test 目录下新建 CodeGenerator 类,用于 mybatis-plus 自动生成 java 代码 package com.edward;import com.baomidou.mybatisplus.generator.FastAutoGenerator; import com.baomidou.mybatisplus.generator.config.OutputFile; import com.baomidou.mybatisplu…

ECMAScript简介及特性

ECMAScript,通常简称为ES,是一种由ECMA(欧洲计算机协会)国际组织标准化和推动的脚本语言规范。它被广泛用于Web浏览器和服务器端编程,是JavaScript的基础。 ECMAScript的起源可以追溯到1996年,当时Netscape…

HCIP-端口隔离、arp代理、聚合vlan、QinQ

目录 一,端口隔离(同vlan间同交换机下的端口隔离技术) 端口隔离原理: 双向隔离配置 4,端口隔离特殊使用:单向隔离 6,ARP代理 6.1 路由式代理 6.2 VLAN内ARP代理 6.3 VLAN间ARP代理 6.3…

Apache 配置与应用

目录 前言 1.1 Apache连接保持 1.2 Apache 的访问控制 1.2.1 客户机地址限制 1.2.2 用户授权限制 1.2.2.1 创建用户认证数据文件 1.2.2.2 添加用户授权配置 1.2.2.3 验证用户访问授权 ​编辑 1.3 Apache 日志分割 1.3.1 Apache 自带rotatelogs 分割工具 1.3.2 使用第…

Docker nginx容器代理播放m3u8视频文件(HLS)

文章目录 Docker Nginx容器代理播放M3U8文件教程获取Nginx Docker镜像设置Nginx配置文件用 ffmpeg 将 MP4 文件转换成 m3u8 文件运行Docker容器测试M3U8流其他问题我用vlc都能播放http://192.168.121.50/forest4kTest.m3u8和http://192.168.121.50/forest4kTest.mp4&#xff0c…

一款开源的MES系统

随着工业4.0的快速发展,制造执行系统(MES)成为了智能制造的核心。今天,将为大家推荐一款开源的MES系统——iMES工厂管家。 什么是iMES工厂管家 iMES工厂管家是一款专为中小型制造企业打造的开源MES系统。它具备高度的可定制性和灵…