冠军团队!第二届百度搜索创新大赛AI方案

 Datawhale干货 

作者:李柯辰,Datawhale成员

写在前面

大家好,我们是2023年第二届百度搜索创新大赛 赛道三——AI应用设计赛道的冠军团队——“肝到凌晨”,很高兴能与大家分享我们这次比赛的经验,同时也希望以后有机会可以一起交流学习。

c6dbcfff4fb3ff260ae15f77f1253b64.png

赛事地址:
https://aistudio.baidu.com/competition/detail/1067/0/introduction

赛道三 —— “设计一个解决搜索用户需求的AI原生应用” 基于参赛者对搜索用户充分的调研,洞察用户在搜索场景的需求,结合AI的能力,构建AI应用直接有效地解决用户痛点和需求。

赛题分析与准备

初赛市场调研

在初赛阶段,经过对 AIGC 市场的深入市场调研和分析,我们注意到随着行业生态的持续成熟,应用层面的 AI 模型发展迅猛,而模型底层技术的开放则为 AI 应用赋予了更广阔的可能性。基于以上调研结果,我们设计了一个以市场需求为导向的智能人机交互知识库方案,充分利用了 AI 的通用能力和个性化能力,有效提升了知识库平台的智能化水平。

0be9511f2b9ac04ef69310c4062b5756.png

方案设想

为了满足市场需求、解决用户痛点,我们深入分析了解用户在简历优化场景中的需求。基于“AI 简历助手”方案设想,我们依托大模型的强大搜索和自然语言生成能力,构建出一款高效的 AI 应用,直接解决用户核心问题,帮助用户快速创建可展示其优势的个性化简历,满足用户需求。

开发路线制定和技术储备

为了解决模型调用技术和开发角度的选择问题,我们仔细研读官方文档,并通过会议交流,制定了总体开发路线和功能设计方案。同时,我们通过检索相关技术文档,总结出过往的大模型应用开发经验和技术方案,进行了充分的技术储备。

协作方式

团队采用远程协作形式,利用飞书、GitHub、任务管理等成熟的办公工具来协调整个开发流程,同时定期拉会议交流协作,进行成果性验收,利用需求池和优先级排序来进行开发进度把控和应用落地方案制定。

团队优势

4489f06039b5bdf36821b0893a4071d6.png

我们因 Datawhale 而聚,从专科、本科到研究生,形成了一支多学科、跨院校,一专多能的复合型团队。自首个 AI 开源项目 LinChance GPT 开始,我们共同成长,默契程度在磨合中不断提升,协作方式也日益成熟。

LinChance GPT 项目链接:https://gpt.linchance.com

我们 Team 中专研 NLP 方向和大模型的北大研究生负责项目大模型和向量数据库实现部分,来自中石大和南开大的研究生负责项目方案创新与产品优化改进,同时我们也有经验丰富的前后端开发工程师负责项目技术构思与 coding 实现,团队分工明确,合作紧密,促进项目开发顺利推进

我们的团队 Leader 李柯辰,来自于南京航空航天大学,同时也是江苏霖承科技有限公司 CEO ,Datawhale 开源组织的活跃成员。他不仅在技术领域表现卓越,同时以其优秀的沟通和协调能力,合理分配任务,严格把控项目进度,实现项目高效推进。

317af721a1bec35d7a33050f94897b68.png c9df8efb51e245cc9a8f664f74092429.png

团队的多样性与专业性使我们能够充分发挥各自的优势,最终取得显著成果。

比赛过程

在本次比赛中,我们的项目涵盖了多个关键阶段,包括竞品分析、技术栈选择、功能设计、原型设计、需求池管理、测试与优化,以及最终的产品发布上线。

11d4f33c57423024dbd97b20c7d613b6.png

以下是我们项目的一些亮点和经验总结:

56d8bbc507fdbd016105f0949826c763.png
  1. 竞品分析与项目启动 在项目初期,我们进行了全面的竞品分析,深入了解市场现状,这为我们明确项目的定位提供了重要参考,确保我们的项目具有独特的竞争力和差异化优势。

  2. 技术栈选择与技术储备 根据赛题要求以及开发路线决策,前端使用百度官方开发者工具进行小程序开发,技术栈为 SWAN App 和 Smart UI,后端继续使用熟悉的 Django 4.2(我们同时也在 GitHub 拥有开源课程,此处附上课程链接:https://github.com/Joe-2002/sweettalk-django4.2),确保功能设计的顺利实现与项目稳定推进。我们提前研读了文心一言模型 3.5 的官方调用文档,并结合 Prompt Engineering 在 demo 中提前跑通实现,为应用开发做好技术储备。

  3. 功能设计 在功能设计阶段,我们结合市场调研、用户需求和竞品分析,确保项目功能既满足用户核心需求,又在技术上可行。

  4. 原型设计 原型设计是项目中的关键环节,我们深入设计了AI应用的具体页面样式与交互逻辑,旨在为用户提供更加直观、友好的使用体验。

  5. 需求池搭建与优先级排序 我们将功能需求进行拆分并构建需求池,根据可实现性和重要性进行优先级排序,帮助团队高效推进项目,确保每个阶段都目标明确。

  6. 测试、优化、迭代 在项目测试阶段,我们使用真实用户信息进行反复测试,根据生成内容进行应用功能完成度评估与分析,并结合内测用户反馈,不断进行产品优化和版本迭代,提升产品的质量,提高用户满意度。

  7. 顺利上线 最后,通过百度官方程序完成项目上线。经过不断迭代,我们的 AI简历助手从初步设想逐步转化为实际应用,形成完整的开发流程闭环。

赛后总结

没有最好,只有更好

在决赛答辩前夕,我们团队全力以赴,积极与主办方安排的专家进行深入交流,不断优化项目PPT,积累答辩技巧。我们追求卓越,坚信没有最好,只有更好。因此,我们以突出产品优势、技术优势和团队优势为目标,不断优化项目,确保在最终答辩时能够呈现出最佳效果。正如我们的队名“肝到凌晨”所寓意的一般——坚持不懈、努力拼搏。

大胆决策,敢于尝试

与其他团队有所不同,我们团队选择完全独立的自主开发式应用,旨在打造一个实用的AI简历优化产品。并且我们采用的是百度开发者工具,由于缺少官方技术文档支持和开发培训,前期踩坑较多。但正是我们在比赛中的果断抉择和大胆尝试,以及不断试错,不断进步,不断实现产品的迭代优化,让我们最终得以扫清一切阻碍,成功完成AI应用的开发。这也成为了我们作品的颠覆性优势,使我们的作品在众多AI应用插件中脱颖而出。

We are a nice team!

我们团队从初赛到决赛这一路走来,不断迎难而上,凭借着独特的团队结构和成员组成,实现了能力的全方面覆盖,最终形成完整的开发链路闭环。也得益于我们娴熟的团队协作和合理的人员分工,早期的 MVP 版本方案能够快速实现落地,拥有一个好的效果和完成度。这些都是我们能够斩获冠军的重要因素。

感谢

89bc4069cd1a70d3efda4e3af8cd47c9.png

感谢 Datawhale 提供了这样一个平台,因为 Datawhale 的 AI 夏令营活动,我们才得以相遇,走到一起成为一个 Team ,让我们的梦想成功落地发芽。

同时,必须感谢对本次比赛的主办方——百度和英伟达,正是因为这次的机会,我们团队得以齐聚北京,共同追求技术的卓越。并在此感谢微软 MVP 讲师刘兆生老师在赛前给予我们的宝贵指导和建议。

最后,感谢我们团队中的每一位成员,从 Datawhale AI 夏令营中获得“最佳创意奖”的开源项目起步,到现在百度搜索创新大赛赛道三中荣获冠军,每一次成就都凝聚着我们每一位成员的辛勤付出与默契协作

Datawhale 不仅仅是一个平台,它更像是一座灯塔,引领着我们这群对知识有着无尽渴望的探索者,驶向更加广阔的技术海洋。

正是 Datawhale 的理念和使命,鼓励并推动了开源文化的发展,让我们这样的团队能够在开放、共享的环境中成长,不断学习和进步。在这个平台上,我们不仅提升了知识和技能,而且更重要的是,我们还培养了团队协作和共同创造的价值观念。Datawhale 的每一次活动、每一次挑战,都激励着我们去超越自我,去追求卓越。

5b86a3b74ee1573f273a8b22307ea2d4.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/330113.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【前沿技术】超级稳定的视频卡通画方案

Git clone项目到本地 git clone gitgithub.com:Artiprocher/DiffSynth-Studio.git 基本原理 使用了stable diffusion稳定扩散模型和controlnet来控制图像生成的轮廓,animatediff控制视频帧与帧之间的连续性,最后使用RIFE技术平滑整个生成后的视频。 …

NI基于PC的测量和控制系统

基于PC的测量和控制系统为工程师提供了电气和物理测量功能,使其能够以可自定义、准确且经济实惠的方式进行台式测量. 什么是基于PC的测量和控制系统? 在基于PC的测量和控制系统中,NI硬件产品通过USB或以太网连接到PC或笔记本电脑。这种系统具…

Mediant approximation trick

近似值的一个取值技巧 如果知道一个数值变量的上限和下限&#xff0c;那么有一种快速的方法&#xff0c;快速获取该变量更准确的近似值。 比如&#xff0c;已知变量e的大小范围是19/7 < e < 87/32&#xff0c;就可以快速得到它的近似值。 Suppose you are trying to ap…

RIS 辅助无线网络:基于模型、启发式和机器学习优化方法

目录 abstractintroduction相关研究BACKGROUND AND PROBLEM FORMULATIONS FOR OPTIMIZING RIS-AIDED WIRELESS NETWORKSA 优化RIS-AIDED无线网络的背景和问题公式RIS操作原则&#xff1a;RIS控制&#xff1a;RIS部署 B 总速率/容量最大化C 功率最小化D 能源效率最大化E 用户公平…

JavaScript基础(24)_dom查询练习(一)

<!DOCTYPE html> <html lang"zh"> <head><meta charset"UTF-8"><link rel"stylesheet" href"../browser_default_style/reset.css"><title>dom查询练习一</title><style>.text {widt…

【STM32】PWR电源控制

1 PWR简介 PWR&#xff08;Power Control&#xff09;电源控制 PWR负责管理STM32内部的电源供电部分&#xff0c;可以实现可编程电压监测器和低功耗模式的功能 可编程电压监测器&#xff08;PVD&#xff09;可以监控VDD电源电压&#xff0c;当VDD下降到PVD阀值以下或上升到P…

在 Linux 中开启 Flask 项目持续运行

在 Linux 中开启 Flask 项目持续运行 在部署 Flask 项目时&#xff0c;情况往往并不是那么理想。默认情况下&#xff0c;关闭 SSH 终端后&#xff0c;Flask 服务就停止了。这时&#xff0c;您需要找到一种方法在 Linux 服务器上实现持续运行 Flask 项目&#xff0c;并在服务器…

Redis内存策略:「过期Key删除策略」+ 「内存淘汰策略」

Redis之所以性能强&#xff0c;最主要的原因就是基于内存存储&#xff0c;然而单节点的Redis其内存大小不宜过大&#xff0c;否则会影响持久化或主从同步的性能。 Redis内存满了&#xff0c;会发生什么&#xff1f; 在Redis的运行内存达到了某个阈值&#xff0c;就会触发内存…

olap/spark-tungsten:codegen

15721这一章没什么好说的&#xff0c;不再贴课程内容了。codegen和simd在工业界一般只会选一种实现。比如phothon之前用codegen&#xff0c;然后改成了向量化引擎。一般gen的都是weld IR/LLVM IR/当前语言&#xff0c;gen成C的也要检查是不是有本地预编译版本&#xff0c;要不没…

实战环境搭建-linux下安装mysql

下载wget命令 yum -y install wget 在线下载mysql安装包 wget https://dev.mysql.com/get/mysql57-community-release-el7-8.noarch.rpm 安装的过程中有可能出现秘钥过期,如下图: 解决办法: rpm --import https://repo.mysql.com/RPM-GPG-KEY-mysql-2022 再次安装,如下…

leetcode动态规划问题总结 Python

目录 一、基础理论 二、例题 1. 青蛙跳台阶 2. 解密数字 3. 最长不含重复字符的子字符串 4. 连续子数组的最大和 5. 最长递增子序列 6. 最长回文字符串 7. 机器人路径条数 8. 礼物的最大价值 一、基础理论 动态规划其实是一种空间换时间的基于历史数据的递推算法&…

【airsim】两分钟,用python脚本获取虚拟数据集

现有的教程在配置基于python的airsim环境过程中&#xff0c;都要求执行完整的编译步骤。然而&#xff0c;在linux和windows上的编译过程中会遇到诸多问题&#xff0c;大概需要半天左右时间。 如果你只是想采集一些数据&#xff0c;测试一下虚拟数据的效果&#xff0c;那么解决…