C# OpenCvSharp DNN FreeYOLO 人脸检测人脸图像质量评估

目录

效果

模型信息

yolo_free_huge_widerface_192x320.onnx

face-quality-assessment.onnx

项目

代码

frmMain.cs

FreeYoloFace

FaceQualityAssessment.cs

下载


C# OpenCvSharp DNN FreeYOLO 人脸检测&人脸图像质量评估

效果

模型信息

yolo_free_huge_widerface_192x320.onnx


Inputs
-------------------------
name:input
tensor:Float[1, 3, 192, 320]
---------------------------------------------------------------

Outputs
-------------------------
name:output
tensor:Float[1, 1260, 6]
---------------------------------------------------------------

face-quality-assessment.onnx

Inputs
-------------------------
name:input
tensor:Float[1, 3, 112, 112]
---------------------------------------------------------------

Outputs
-------------------------
name:quality
tensor:Float[1, 10]
---------------------------------------------------------------

项目

代码

frmMain.cs

using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Text;
using System.Windows.Forms;

namespace OpenCvSharp_DNN_Demo
{
    public partial class frmMain : Form
    {
        public frmMain()
        {
            InitializeComponent();
        }

        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";

        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;

        StringBuilder sb = new StringBuilder();

        Mat image;
        Mat result_image;

        FaceQualityAssessment fqa = new FaceQualityAssessment("model/face-quality-assessment.onnx");
        FreeYoloFace face = new FreeYoloFace("model/yolo_free_huge_widerface_192x320.onnx");

        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;

            pictureBox1.Image = null;
            pictureBox2.Image = null;
            textBox1.Text = "";

            image_path = ofd.FileName;
            pictureBox1.Image = new Bitmap(image_path);
            image = new Mat(image_path);
        }

        private void Form1_Load(object sender, EventArgs e)
        {
            image_path = "test_img/1.jpg";
            pictureBox1.Image = new Bitmap(image_path);
        }

        private unsafe void button2_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }
            textBox1.Text = "检测中,请稍等……";
            if (pictureBox2.Image != null)
            {
                pictureBox2.Image.Dispose();
            }
            pictureBox2.Image = null;
            sb.Clear();
            Application.DoEvents();

            image = new Mat(image_path);

            dt1 = DateTime.Now;
            List<Face> ltFace = face.Detect(image);
            dt2 = DateTime.Now;

            if (ltFace.Count > 0)
            {
                sb.AppendLine("推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms");
                result_image = image.Clone();
                foreach (var item in ltFace)
                {
                    Mat crop_img = new Mat(image, item.rect);
                    float fqa_prob_mean = fqa.Detect(crop_img);
                    crop_img.Dispose();
                    Cv2.Rectangle(result_image, new OpenCvSharp.Point(item.rect.X, item.rect.Y), new OpenCvSharp.Point(item.rect.X + item.rect.Width, item.rect.Y + item.rect.Height), new Scalar(0, 0, 255), 2);
                    string label = "prob:" + item.prob.ToString("0.00") + " fqa_score:" + fqa_prob_mean.ToString("0.00");
                    sb.AppendLine(label);
                    Cv2.PutText(result_image, label, new OpenCvSharp.Point(item.rect.X, item.rect.Y - 5), HersheyFonts.HersheySimplex, 1, new Scalar(0, 0, 255), 2);
                }
                pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
                textBox1.Text = sb.ToString();
            }
            else
            {
                textBox1.Text = "未检测到人脸";
            }
        }

        private void pictureBox2_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox2.Image);
        }

        private void pictureBox1_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox1.Image);
        }
    }
}

FreeYoloFace.cs

using OpenCvSharp.Dnn;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Linq;namespace OpenCvSharp_DNN_Demo
{public class FreeYoloFace{float confThreshold;float nmsThreshold;int num_stride = 3;float[] strides = new float[3] { 8.0f, 16.0f, 32.0f };string modelpath;int inpHeight;int inpWidth;List<string> class_names;int num_class;Net opencv_net;Mat BN_image;Mat image;public FreeYoloFace(string modelpath){opencv_net = CvDnn.ReadNetFromOnnx(modelpath);class_names = new List<string> { "face" };num_class = 1;confThreshold = 0.8f;nmsThreshold = 0.5f;inpHeight = 192;inpWidth = 320;}unsafe public List<Face> Detect(Mat image){List<Face> ltFace = new List<Face>();float ratio = Math.Min(1.0f * inpHeight / image.Rows, 1.0f * inpWidth / image.Cols);int neww = (int)(image.Cols * ratio);int newh = (int)(image.Rows * ratio);Mat dstimg = new Mat();Cv2.Resize(image, dstimg, new OpenCvSharp.Size(neww, newh));Cv2.CopyMakeBorder(dstimg, dstimg, 0, inpHeight - newh, 0, inpWidth - neww, BorderTypes.Constant);BN_image = CvDnn.BlobFromImage(dstimg);//配置图片输入数据opencv_net.SetInput(BN_image);//模型推理,读取推理结果Mat[] outs = new Mat[1] { new Mat() };string[] outBlobNames = opencv_net.GetUnconnectedOutLayersNames().ToArray();opencv_net.Forward(outs, outBlobNames);int num_proposal = outs[0].Size(1);int nout = outs[0].Size(2);float* pdata = (float*)outs[0].Data;List<float> confidences = new List<float>();List<Rect> boxes = new List<Rect>();List<int> classIds = new List<int>();for (int n = 0; n < num_stride; n++){int num_grid_x = (int)Math.Ceiling(inpWidth / strides[n]);int num_grid_y = (int)Math.Ceiling(inpHeight / strides[n]);for (int i = 0; i < num_grid_y; i++){for (int j = 0; j < num_grid_x; j++){float box_score = pdata[4];int max_ind = 0;float max_class_socre = 0;for (int k = 0; k < num_class; k++){if (pdata[k + 5] > max_class_socre){max_class_socre = pdata[k + 5];max_ind = k;}}max_class_socre = max_class_socre * box_score;max_class_socre = (float)Math.Sqrt(max_class_socre);if (max_class_socre > confThreshold){float cx = (0.5f + j + pdata[0]) * strides[n];  //cxfloat cy = (0.5f + i + pdata[1]) * strides[n];   //cyfloat w = (float)(Math.Exp(pdata[2]) * strides[n]);   //wfloat h = (float)(Math.Exp(pdata[3]) * strides[n]);  //hfloat xmin = (float)((cx - 0.5 * w) / ratio);float ymin = (float)((cy - 0.5 * h) / ratio);float xmax = (float)((cx + 0.5 * w) / ratio);float ymax = (float)((cy + 0.5 * h) / ratio);int left = (int)((cx - 0.5 * w) / ratio);int top = (int)((cy - 0.5 * h) / ratio);int width = (int)(w / ratio);int height = (int)(h / ratio);confidences.Add(max_class_socre);boxes.Add(new Rect(left, top, width, height));classIds.Add(max_ind);}pdata += nout;}}}int[] indices;CvDnn.NMSBoxes(boxes, confidences, confThreshold, nmsThreshold, out indices);for (int ii = 0; ii < indices.Length; ++ii){int idx = indices[ii];Rect box = boxes[idx];ltFace.Add(new Face(box, confidences[idx]));}outs[0].Dispose();BN_image.Dispose();dstimg.Dispose();return ltFace;}}
}

FaceQualityAssessment.cs

using OpenCvSharp;
using OpenCvSharp.Dnn;
using System.Linq;namespace OpenCvSharp_DNN_Demo
{public class FaceQualityAssessment{Net net;int inpWidth = 112;int inpHeight = 112;float[] mean = new float[] { 0.5f, 0.5f, 0.5f };float[] std = new float[] { 0.5f, 0.5f, 0.5f };public FaceQualityAssessment(string modelpath){net = CvDnn.ReadNetFromOnnx(modelpath);}unsafe public float Detect(Mat cropped){Mat rgbimg = new Mat();Cv2.CvtColor(cropped, rgbimg, ColorConversionCodes.BGR2RGB);Cv2.Resize(rgbimg, rgbimg, new Size(inpWidth, inpHeight));Mat normalized_mat = Normalize(rgbimg);Mat blob = CvDnn.BlobFromImage(normalized_mat);//配置图片输入数据net.SetInput(blob);//模型推理,读取推理结果Mat[] outs = new Mat[1] { new Mat() };string[] outBlobNames = net.GetUnconnectedOutLayersNames().ToArray();net.Forward(outs, outBlobNames);float* pdata = (float*)outs[0].Data;  //形状1x10int length = outs[0].Size(1);float fqa_prob_mean = 0;for (int i = 0; i < length; i++){fqa_prob_mean += pdata[i];}fqa_prob_mean /= length;rgbimg.Dispose();normalized_mat.Dispose();blob.Dispose();outs[0].Dispose();return fqa_prob_mean;}Mat Normalize(Mat src){Mat[] bgr = src.Split();for (int i = 0; i < bgr.Length; ++i){bgr[i].ConvertTo(bgr[i], MatType.CV_32FC1, 1.0 / (255.0 * std[i]), (0.0 - mean[i]) / std[i]);}Cv2.Merge(bgr, src);foreach (Mat channel in bgr){channel.Dispose();}return src;}}
}

下载

源码下载

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/333288.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

北斗短报文技术在灾区通讯救援中的应用与价值

北斗短报文技术在灾区通讯救援中的应用与价值 随着全球化的进程和科技的快速发展&#xff0c;人类社会在取得巨大经济成果的同时&#xff0c;也面临了许多自然灾害的挑战。地震、洪水、台风等天灾频繁发生&#xff0c;严重威胁着人们的生命财产安全。灾害发生时&#xff0c;及…

Qt/C++音视频开发63-设置视频旋转角度/支持0-90-180-270度旋转/自定义旋转角度

一、前言 设置旋转角度&#xff0c;相对来说是一个比较小众的需求&#xff0c;如果视频本身带了旋转角度&#xff0c;则解码播放的时候本身就会旋转到对应的角度显示&#xff0c;比如手机上拍摄的视频一般是旋转了90度的&#xff0c;如果该视频文件放到电脑上打开&#xff0c;…

Zabbix“专家坐诊”第223期问答汇总

来源&#xff1a;乐维社区 问题一 Q&#xff1a;Zabbix 5.0安装完mysql之后怎么备份&#xff1f;忘记mysql当时创建的密码了&#xff0c;怎么样能查看设置的密码&#xff1f; A&#xff1a;mysql初始化密码在 /var/log/mysqld.log中可以看到&#xff0c;搜关键字temporary pas…

Python爬虫基础:使用Scrapy库初步探索编程零基础可以学么?

Scrapy是Python中最流行的网页爬虫框架之一&#xff0c;强大且功能丰富。通过Scrapy&#xff0c;你可以快速创建一个爬虫&#xff0c;高效地抓取和处理网络数据。在这篇文章中&#xff0c;我们将介绍如何使用Scrapy构建一个基础的爬虫。 一、Scrapy简介及安装 Scrapy是一个用…

【Python】 python简介开发环境

1. python简介 Python是由荷兰人吉多范罗苏姆 (Guido von Rossum&#xff0c;后面称呼为Guido,"龟叔“)发明的一种编程语言&#xff0c;是目前世界上最受欢迎和拥有最多用户群体的编程语言。 (1).Python的历史 1.1989年圣诞节:Guido开始写Python语言的编译器。 2.1991年…

2024年中职网络安全——Windows操作系统渗透测试(Server2105)

Windows操作系统渗透测试 任务环境说明&#xff1a; 服务器场景&#xff1a;Server2105服务器场景操作系统&#xff1a;Windows&#xff08;版本不详&#xff09;&#xff08;封闭靶机&#xff09;需要环境加Q 目录 1.通过本地PC中渗透测试平台Kali对服务器场景进行系统服务…

JUC Lock 读写锁

文章目录 ReentrantReadWriteLock^1.5^ 读写锁ReentrantReadWriteLock 继承关系图示例 1示例 2先获取读锁再获取写锁先获取写锁再获取读锁锁降级 总结 StampedLock^1.8^ &#xff08;邮戳锁&#xff09;基本使用示例1示例2示例3StampedLock 源码文档上的示例 ReentrantReadWrit…

【Flutter 开发实战】Dart 基础篇:常用运算符

在Dart中&#xff0c;运算符是编写任何程序的基本构建块之一。本文将详细介绍Dart中常用的运算符&#xff0c;以帮助初学者更好地理解和运用这些概念。 1. 算术运算符 算术运算符用于执行基本的数学运算。Dart支持常见的加、减、乘、除、整除以及取余运算。常见的算数运算符如…

虽迟但到!MySQL 可以用 JavaScript 写存储过程了!

任何能用 JavaScript 来干的事情&#xff0c;最终都会用 JavaScript 来干 背景 不久前&#xff0c;Oracle 在 MySQL 官方博客官宣了在 MySQL 中支持用 JavaScript 来写存储过程。 最流行的编程语言 最流行的数据库。程序员不做选择&#xff0c;当然是全都要。 使用方法 用 J…

TikTok年度消费价值洞察:捕获跨境电商新机遇

2023年无疑是充满变化和挑战的一年&#xff0c;TikTok落地全球的过程十分坎坷&#xff0c;从曾经被封杀禁停的低迷&#xff0c;到现在重启复苏的大快人心&#xff0c;可谓是“柳暗花明又一村”。 在TikTok全球市场逐渐回暖的情况下&#xff0c;各国民众消费信心得到提振&#x…

无人直播系统源码--抖音、快手、美团、小红书等多平台开发

核心技术 1. AI自动直播&#xff1a; 智能系统通过丰富可定制的文案库&#xff0c; 拥有有料有趣的灵魂。不仅能自动语音讲解内容&#xff0c;还可以在直播中和用户灵活互动。直播中可将团购商品同话术自动上下架。 2. AI剪辑 可一键智能批量成片&#xff0c;也可跟着模板剪…

【软考中级-软件设计师】day4:数据结构-线性表、单链表、栈和队列、串

大纲 线性结构 顺序存储和链式存储区别 单链表的插入和删除 真题 栈和队列 真题 串