数据结构与算法 - 线性表

文章目录

  • 第1关:实现一个顺序存储的线性表
  • 第2关:实现一个链接存储的线性表


第1关:实现一个顺序存储的线性表

编程要求
本关任务是实现 step1/Seqlist.cpp 中的SL_InsAt、SL_DelAt和SL_DelValue三个操作函数,以实现线性表中数据的插入、删除与查找等功能。具体要求如下:

SL_InsAT: 在顺序表的位置i插入结点x,即插入d[i]之前,i的有效范围[0,slist->len];

SL_DelAt:删除顺序表slist的第i号结点, i的有效范围应在[0,slist->len)内,否则会产生异常或错误。返回被删除的数据元素的值;

SL_DelValue:删除第一个值为x的结点,存在值为x的结点则返回结点编号,未找到返回-1;

输入输出格式请参见后续测试样例。

注意:本关必读中提及的其他操作已经由平台实现,你在实现本关任务的三个操作函数时,在函数体内可调用其他操作。

/*************************************************************date: April 2017copyright: Zhu EnDO NOT distribute this code without my permission.
**************************************************************/
// 顺序表操作实现文件
//
#include <stdio.h>
#include <stdlib.h>
#include "Seqlist.h"
SeqList* SL_Create(int maxlen)
// 创建一个顺序表
// 与SqLst_Free()配对
{SeqList* slist=(SeqList*)malloc(sizeof(SeqList));slist->data = (T*)malloc(sizeof(T)*maxlen);slist->max=maxlen;slist->len=0;return slist;
}
void SL_Free(SeqList* slist)
// 释放/删除 顺序表
// 与SqLst_Create()配对
{free(slist->data);free(slist);
}
void SL_MakeEmpty(SeqList* slist)
// 置为空表
{slist->len=0;
}
int SL_Length(SeqList* slist)
// 获取长度
{return slist->len;
}
bool SL_IsEmpty(SeqList* slist)
// 判断顺序表是否空
{return 0==slist->len;
}
bool SL_IsFull(SeqList* slist)
// 判断顺序表是否满
{return slist->len==slist->max;
}
T SL_GetAt(SeqList* slist, int i)
// 获取顺序表slist的第i号结点数据
// 返回第i号结点的值
{if(i<0||i>=slist->len) {printf("SL_GetAt(): location error when reading elements of the slist!\n");        SL_Free(slist);exit(0);}else return slist->data[i];
}
void SL_SetAt(SeqList* slist, int i, T x)
// 设置第i号结点的值(对第i号结点的数据进行写)
{if(i<0||i>=slist->len) {printf("SL_SetAt(): location error when setting elements of the slist!\n");        SL_Free(slist);exit(0);}else slist->data[i]=x;
}
bool SL_InsAt(SeqList* slist, int i, T x)
// 在顺序表的位置i插入结点x, 插入d[i]之前
// i的有效范围[0,plist->len]
{// 请在这里补充代码,完成本关任务/********** Begin *********/if (i<0 || i>slist->len || slist->len==slist->max) {printf("SL_InsAt(): location error, or slist full.\n");return false;}for (int j=slist->len; j>=i+1; j--) {slist->data[j]=slist->data[j-1];}slist->data[i]=x;slist->len++;return true;/********** End **********/
}
T SL_DelAt(SeqList* slist, int i)
// 删除顺序表plist的第i号结点
// i的有效范围应在[0,plist->len)内,否则会产生异常或错误。
// 返回被删除的数据元素的值。
{// 请在这里补充代码,完成本关任务/********** Begin *********/if (i<0 || i>=slist->len) {printf("SL_DelAt(): location error!\n");SL_Free(slist);exit(0);}T res=slist->data[i];for (int j=i; j<slist->len-1; j++) {slist->data[j] = slist->data[j+1];}slist->len--;return res;/********** End **********/
}
int SL_FindValue(SeqList* slist, T x)
// 在顺序表表中查找第一个值为x的结点,返回结点的编号
// 返回值大于等于0时表示找到值为x的结点的编号,-1表示没有找到
{int i=0;while(i<slist->len && slist->data[i]!=x) i++;if (i<slist->len) return i;else return -1;
}
int SL_DelValue(SeqList* slist, T x)
// 删除第一个值为x的结点,
// 存在值为x的结点则返回结点编号, 未找到返回-1
{// 请在这里补充代码,完成本关任务/********** Begin *********/int i=SL_FindValue(slist, x);if (i>=0) SL_DelAt(slist, i);return i;/********** End **********/
}
void SL_Print(SeqList* slist)
// 打印整个顺序表
{if (slist->len==0) {printf("The slist is empty.\n");        return;}//printf("The slist contains: ");for (int i=0; i<slist->len; i++) {printf("%d  ", slist->data[i]);}printf("\n");    }

在这里插入图片描述

第2关:实现一个链接存储的线性表

编程要求
本关任务是实现 step2/LinkList.cpp中的LL_InsAfter操作函数,以实现线性表数据插入功能。具体要求如下:

在线性表的当前位置之后插入数据元素x。空表允许插入,当前位置指针将指向新结点。若插入失败,返回false,否则返回true;

输入输出格式请参见后续测试样例。

注意:本关必读中提及的其他操作函数已经由平台实现,你在实现操作函数LL_InsAfter时,在函数体内可调用其他操作函数。

/*************************************************************date: April 2017copyright: Zhu EnDO NOT distribute this code without my permission.
**************************************************************/
// 单链表实现文件
#include <stdio.h>
#include <stdlib.h>
#include "LinkList.h"
// 1)
LinkList* LL_Create()
// 创建一个链接存储的线性表,初始为空表,返回llist指针。
{LinkList* llist=(LinkList*)malloc(sizeof(LinkList));llist->front=NULL;llist->rear=NULL;llist->pre=NULL;llist->curr=NULL;llist->position=0;llist->len=0;return llist;
}
// 2)    
void LL_Free(LinkList* llist)
// 释放链表的结点,然后释放llist所指向的结构。
{LinkNode* node=llist->front;LinkNode* nextnode;while(node){nextnode=node->next;free(node);node=nextnode;}free(llist);
}
// 3)    
void LL_MakeEmpty(LinkList* llist)
// 将当前线性表变为一个空表,因此需要释放所有结点。
{LinkNode* node=llist->front;LinkNode* nextnode;while(node){nextnode=node->next;free(node);node=nextnode;}llist->front=NULL;llist->rear=NULL;llist->pre=NULL;llist->curr=NULL;llist->position=0;llist->len=0;
}
// 4)    
int LL_Length(LinkList* llist)
// 返回线性表的当前长度。
{return llist->len;
}
// 5)    
bool LL_IsEmpty(LinkList* llist)
// 若当前线性表是空表,则返回true,否则返回TRUE。
{return llist->len==0;
}
// 6)  
bool LL_SetPosition(LinkList* llist, int i)
// 设置线性表的当前位置为i号位置。
// 设置成功,则返回true,否则返回false(线性表为空,或i不在有效的返回)。
// 假设线性表当前长度为len,那么i的有效范围为[0,len]。
{    int k;/* 若链表为空,则返回*/if (llist->len==0) return false;/*若位置越界*/if( i < 0 || i > llist->len){    printf("LL_SetPosition(): position error");return false;}/* 寻找对应结点*/llist->curr = llist->front;llist->pre = NULL;llist->position = 0;for ( k = 0; k < i; k++)    {llist->position++;llist->pre = llist->curr;llist->curr = (llist->curr)->next;}/* 返回当前结点位置*/return true;
}
// 7)    
int LL_GetPosition(LinkList* llist)
// 获取线性表的当前位置结点的编号。
{return llist->position;
}
// 8)    
bool LL_NextPosition(LinkList* llist)
// 设置线性表的当前位置的下一个位置为当前位置。
// 设置成功,则返回true,否则返回false(线性表为空,或当前位置为表尾)。
{if (llist->position >= 0 && llist->position < llist->len)/* 若当前结点存在,则将其后继结点设置为当前结点*/{llist->position++;llist->pre = llist->curr;llist->curr = llist->curr->next;return true;}else return false;
}
// 9)    
T LL_GetAt(LinkList* llist)
// 返回线性表的当前位置的数据元素的值。
{if(llist->curr==NULL){printf("LL_GetAt(): Empty list, or End of the List.\n");LL_Free(llist);exit(1);}return llist->curr->data;
}
// 10)    
void LL_SetAt(LinkList* llist, T x)
// 将线性表的当前位置的数据元素的值修改为x。
{if(llist->curr==NULL){printf("LL_SetAt(): Empty list, or End of the List.\n");LL_Free(llist);exit(1);}llist->curr->data=x;
}
// 11)    
bool LL_InsAt(LinkList* llist, T x)
// 在线性表的当前位置之前插入数据元素x。当前位置指针指向新数据元素结点。
// 若插入失败,返回false,否则返回true。
{    LinkNode *newNode=(LinkNode*)malloc(sizeof(LinkNode));if (newNode==NULL) return false;newNode->data=x;if (llist->len==0){/* 在空表中插入*/newNode->next=NULL;llist->front = llist->rear = newNode;}//当前位置为表头。else if (llist->pre==NULL){/* 在表头结点处插入*/newNode->next = llist->front;llist->front = newNode;}else {  /* 在链表的中间位置或表尾后的位置插入*/newNode->next = llist->curr;llist->pre->next=newNode;}//插入在表尾后。if (llist->pre==llist->rear)llist->rear=newNode;/* 增加链表的大小*/llist->len++;/* 新插入的结点为当前结点*/llist->curr = newNode;return true;
}
// 12)    
bool LL_InsAfter(LinkList* llist, T x)
// 在线性表的当前位置之后插入数据元素x。空表允许插入。当前位置指针将指向新结点。
// 若插入失败,返回false,否则返回true。
{// 请在Begin-End之间补充代码,实现结点插入。/********** Begin *********/LinkNode *newNode=(LinkNode*)malloc(sizeof(LinkNode));if (newNode==NULL) return false;newNode->data=x;if (llist->len==0)    {/* 在空表中插入*/newNode->next=NULL;llist->front = llist->rear = newNode;}else if (llist->curr == llist->rear || llist->curr == NULL)    {/* 在尾结点后插入*/newNode->next = NULL;llist->rear->next=newNode;llist->pre=llist->rear;llist->rear=newNode;llist->position=llist->len;}else{/* 在中间位置插入*/newNode->next = llist->curr->next;llist->curr->next=newNode;llist->pre=llist->curr;llist->position ++;}/* 增加链表的大小*/llist->len ++;/* 新插入的结点为当前结点*/llist->curr = newNode;return true;/********** End **********/
}
// 13)    
bool LL_DelAt(LinkList* llist)
// 删除线性表的当前位置的数据元素结点。
// 若删除失败(为空表,或当前位置为尾结点之后),则返回false,否则返回true。
{    LinkNode *oldNode;/* 若表为空或已到表尾之后,则给出错误提示并返回*/if (llist->curr==NULL){    printf("LL_DelAt(): delete a node that does not exist.\n");return false;}oldNode=llist->curr;/* 删除的是表头结点*/if (llist->pre==NULL){    llist->front = oldNode->next;}/* 删除的是表中或表尾结点*/else if(llist->curr!=NULL){llist->pre->next = oldNode->next;}if (oldNode == llist->rear)    {/* 删除的是表尾结点,则修改表尾指针和当前结点位置值*/llist->rear = llist->pre;}/* 后继结点作为新的当前结点*/llist->curr = oldNode->next;/* 释放原当前结点*/free(oldNode);/* 链表大小减*/llist->len --;return true;
}
// 14)    
bool LL_DelAfter(LinkList* llist)
// 删除线性表的当前位置的后面那个数据元素。
// 若删除失败(为空表,或当前位置时表尾),则返回false,否则返回true。
{LinkNode *oldNode;/* 若表为空或已到表尾,则给出错误提示并返回*/if (llist->curr==NULL || llist->curr== llist->rear){printf("LL_DelAfter():  delete a node that does not exist.\n");return false;}/* 保存被删除结点的指针并从链表中删除该结点*/oldNode = llist->curr->next;llist->curr->next=oldNode->next;if (oldNode == llist->rear)/* 删除的是表尾结点*/llist->rear = llist->curr;/* 释放被删除结点*/free(oldNode);/* 链表大小减*/llist->len --;return true;
}
// 15)    
int LL_FindValue(LinkList* llist, T x)
// 找到线性表中第一个值为x的数据元素的编号。
// 返回值-1表示没有找到,返回值>=0表示编号。
{LinkNode* p=llist->front;int idx=0;while(p!=NULL && p->data!=x) {idx++;p = p->next;}if (idx>=llist->len) return -1;else return idx;
}
// 16)    
int LL_DelValue(LinkList* llist, T x)
// 删除第一个值为x的数据元素,返回该数据元素的编号。如果不存在值为x的数据元素,则返回-1。
{int idx=LL_FindValue(llist, x);if (idx<0) return -1;LL_SetPosition(llist, idx);LL_DelAt(llist);return idx;
}
// 17)    
void LL_Print(LinkList* llist)
// 打印整个线性表。
{LinkNode* node=llist->front;while (node) {printf("%d ", node->data);node=node->next;}printf("\n");
}

在这里插入图片描述


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/333321.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

百度搜索exgraph图执行引擎设计与实践

作者 | 搜索Go研发组 导读 百度搜索exgraph图执行引擎设计重点分成三个部分&#xff1a;图描述语言、图执行引擎、对接扩展。 图描述语言是一种基于文本可读的图描述语言&#xff0c;用于描述任务中的算子以及算子之间的依赖关系&#xff0c;即让人可以理解&#xff0c;也可以被…

陀螺仪LSM6DSV16X与AI集成(5)----6D方向检测功能

陀螺仪LSM6DSV16X与AI集成.5--6D方向检测功能 概述视频教学样品申请源码下载生成STM32CUBEMX串口配置IIC配置CS和SA0设置串口重定向参考程序初始换管脚获取ID复位操作BDU设置6D方向检测功能配置选择滤波和角度阈值设置量程和速率获取所有中断源的状态发送相应信息演示 概述 陀…

华为ipv4+ipv6双栈加isis多拓扑配置案例

实现效果&#xff1a;sw1中的ipv4和ipv6地址能ping通sw2中的ipv4和ipv6地址 R2-R4为存IPV4连接&#xff0c;其它为ipv6和ipv4双连接 sw1 ipv6 interface Vlanif1 ipv6 enable ip address 10.0.11.1 255.255.255.0 ipv6 address 2001:DB8:11::1/64 interface MEth0/0/1 inter…

避免重复扣款:分布式支付系统的幂等性原理与实践

这是《百图解码支付系统设计与实现》专栏系列文章中的第&#xff08;6&#xff09;篇。 本文主要讲清楚什么是幂等性原理&#xff0c;在支付系统中的重要应用&#xff0c;业务幂等、全部幂等这些不同的幂等方案选型带来的收益和复杂度权衡&#xff0c;幂等击穿场景及可能的严重…

供应链安全-镜像 Trivy kubesec

开头语 写在前面&#xff1a;如有问题&#xff0c;以你为准&#xff0c; 目前24年应届生&#xff0c;各位大佬轻喷&#xff0c;部分资料与图片来自网络 内容较长&#xff0c;页面右上角目录方便跳转 Dockerfile 文件优化 减少镜像层&#xff1a;一次RUN指令形成新的一层&a…

世微AP3464 DC-DC同步降压恒压IC 4-30V2.4A输出同步降压驱动芯片

AP3464 是一款支持宽电压输入的同步降压 电源管理芯片&#xff0c;输入电压 4-30V 范围内可实现 2.4A 的连续电流输出。通过调节 FB 端口的分压 电阻&#xff0c;设定输出 1.8V 到 28V 的稳定电压。 AP3464 具有的恒压/恒流(CC/CV)特性。 AP3464 采用电流模式的环路控制原理&am…

Java怎么实现几十万条数据插入(30万条数据插入MySQL仅需13秒)

本文主要讲述通过MyBatis、JDBC等做大数据量数据插入的案例和结果。 30万条数据插入插入数据库验证 实体类、mapper和配置文件定义User实体mapper接口mapper.xml文件jdbc.propertiessqlMapConfig.xml 不分批次直接梭哈循环逐条插入MyBatis实现插入30万条数据JDBC实现插入30万条…

Django配置日志系统的最佳实践

概要 日志是跟踪应用行为、监控错误、性能分析和安全审计的重要工具。在Django框架中&#xff0c;合理配置日志系统可以帮助开发者有效管理项目运行过程中的关键信息。本文将详细介绍Django日志系统的最佳实践。 日志系统概述 Django使用Python的 logging 模块来实现日志系统…

服务器宕机怎么办?怎么预防宕机?

相信不少用户会听到或者在文章中提到电脑宕机或者服务器宕机&#xff0c;不少用户对宕机的意思不太理解。那么服务器宕机是什么意思&#xff1f; 宕机属于计算机的术语&#xff0c;指电脑或者服务器不能正常工作。口语中我们简单的把停掉机器叫做down机&#xff0c;转换为汉字是…

【计算机毕业设计】基于springboot的校园跑腿任务管理系统java+vue

校园跑腿管理系统又称“效率鸭”跑腿系统&#xff0c;是在学校进行现代化的信息管理和提供信息服务的基础&#xff0c;引导人们快速、准确地获取快递资源、预约洗浴并对外卖资源进行有效管理的保证。疫情当下&#xff0c;为了减少人员的聚集&#xff0c;因此&#xff0c;迫切需…

【每日一词】数据隐私

每日一词&#xff1a;数据隐私 数据隐私是指个人或组织对其个人信息的控制权和保护需求。在互联网时代&#xff0c;大量的个人数据被收集、存储和处理&#xff0c;数据隐私的重要性日益凸显。 解释和示例 数据隐私涉及个人信息的保护&#xff0c;包括但不限于身份信息、联系方…

WebGL在实验室方向的应用

WebGL在实验室方向的应用涉及到实验过程的可视化、数据分析、模拟等方面。以下是一些WebGL在实验室领域的应用示例&#xff0c;希望对大家有所帮助。北京木奇移动技术有限公司&#xff0c;专业的软件外包开发公司&#xff0c;欢迎交流合作。 1.分子模型和化学反应模拟&#xff…