李沐之神经网络基础

目录

1.模型构造

1.1层和块

1.2自定义块

1.3顺序块

1.4在前向传播函数中执行代码

2.参数管理

2.1参数访问

2.2参数初始化

3.自定义层

3.1不带参数的层

3.2带参数的层

4.读写文件

4.1加载和保存张量

4.2加载和保存模型参数


1.模型构造

1.1层和块

import torch
from torch import nn
from torch.nn import functional as F
#定义了一些没有包括参数的函数net = nn.Sequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))
#构造的单层神经网络,线性层,激活层,线性层X = torch.rand(2, 20)
#生成一个随机的input,torch.rand是用于生成均匀随机分布张量的函数,从区间[0,1)的均匀分布中
#随机抽取一个随机数生成一个张量,其中2是批量大小,20是输入的维度。
net(X)"""输出结果:
tensor([[ 0.0343,  0.0264,  0.2505, -0.0243,  0.0945,  0.0012, -0.0141,  0.0666,-0.0547, -0.0667],[ 0.0772, -0.0274,  0.2638, -0.0191,  0.0394, -0.0324,  0.0102,  0.0707,-0.1481, -0.1031]], grad_fn=<AddmmBackward0>)"""

1.2自定义块

#任何一个层和任何一个神经网络应该都是muodule的一个子类
class MLP(nn.Module):
#定义了一个MLP类继承nn.Module:def __init__(self):# 调用MLP的父类Module的构造函数来执行必要的初始化。# 这样,在类实例化时也可以指定其他函数参数,例如模型参数params(稍后将介绍)#在init函数里面定义了需要的函数和参数,在运行类对象的时候可以自动传递参数给属性,#和运行方法super().__init__(self):#调用父类nn.Module成员方法,把所需要的内部参数给全部设好self.hidden=nn.Linear(20,256)self.out=nn.Linear(256,10)#定义两个全连接层#__init__函数包括了网络里面需要的全部的层# 定义模型的前向传播,即如何根据输入X返回所需的模型输出def forward(self,x):return self.out(F.relu(self.hidden()))#F里面实现了很多的常用的和函数,注意,这里我们使用ReLU的函数版本,#其在nn.functional模块中定义。#实例化多层感知机的层,然后在每次调用前向传播函数时调用这些层。注意一些关键细节: 首先,
#我们定制的__init__函数通过super().__init__() 调用父类的__init__函数, 省去了重复编写
#模版代码的痛苦。 然后,我们实例化两个全连接层, 分别为self.hidden和self.out。 注意,
#除非我们实现一个新的运算符, 否则我们不必担心反向传播函数或参数初始化, 系统将自动生成这些。 net=MLP()
net(X)
#这里可以直接调用net(x)而不是net.forward(x)的原因是nn.Module() 中包含了 __call__ 函数
"""输出结果:
tensor([[ 0.0669,  0.2202, -0.0912, -0.0064,  0.1474, -0.0577, -0.3006,  0.1256,-0.0280,  0.4040],[ 0.0545,  0.2591, -0.0297,  0.1141,  0.1887,  0.0094, -0.2686,  0.0732,-0.0135,  0.3865]], grad_fn=<AddmmBackward0>)"""

块的一个主要优点是它的多功能性。 我们可以子类化块以创建层(如全连接层的类)、 整个模型(如上面的MLP类)或具有中等复杂度的各种组件。 我们在接下来的章节中充分利用了这种多功能性, 比如在处理卷积神经网络时。

1.3顺序块

class MySequential(nn.Module):def __init__(self,*args):#*表示接受不定长参数传递super().__init__()for idx,module in enumerate(args):#这里,module是Module子类的一个实例。我们把它保存在'Module'类的成员,#变量_modules中。_module的类型是OrderedDict#enumerate()函数用于将一个可遍历的数据对象(如列表、元组或字符串)组合为一个索引#序列,同时列出数据和数据下标(把序号和内容打包在一起),一般用在 for 循环当中。#idx是序号,module是内容(也就是层)self._modules[str(idx)]=module#enumerate返回的是一个枚举对象,把索引转换成字符串使之可以被顺序访问#写入字典中def forward(self,X):# OrderedDict保证了按照成员添加的顺序遍历它们for block in self._modiles.values():X=block(X)return Xnet=MySequential(nn.Linear(20,256),nn.ReLU(),nn.Linear(256,10))
net(X)
"""结果输出:
tensor([[ 2.2759e-01, -4.7003e-02,  4.2846e-01, -1.2546e-01,  1.5296e-01,1.8972e-01,  9.7048e-02,  4.5479e-04, -3.7986e-02,  6.4842e-02],[ 2.7825e-01, -9.7517e-02,  4.8541e-01, -2.4519e-01, -8.4580e-02,2.8538e-01,  3.6861e-02,  2.9411e-02, -1.0612e-01,  1.2620e-01]],grad_fn=<AddmmBackward0>)
"""

     __init__函数将每个模块逐个添加到有序字典_modules中。_modules的主要优点是: 在模块的参数初始化过程中, 系统知道在_modules字典中查找需要初始化参数的子块。当MySequential的前向传播函数被调用时, 每个添加的块都按照它们被添加的顺序执行。 现在可以使用我们的MySequential类重新实现多层感知机。

1.4在前向传播函数中执行代码

class FixedHiddenMLP(nn.Module):def __init__(self):super().__init__()# 不计算梯度的随机权重参数。因此其在训练期间保持不变self.rand_weight=torch.rand((20,20),requires_grad=False)#形状是20*20self.linear=nn.Linear(20,20)#nn.Linear其中第一个维度是batch_size,第二个维度是输入特征的数量。输出是#一个二维张量,其中第一个维度是batch_size,第二个维度是输出特征的数量。def forward(self,X):X=self.linear(X)#使用创建的常量参数以及relu和mm函数X=F.relu(torch.mm(X,self.rand_weight)+1)# 复用全连接层。这相当于两个全连接层共享参数X=self.linear(X)# 控制流while X.abs().sum()>1:#当绝对值求和大于1(l1范数)就一直除以2X/=2return X.sum#返回的是标量net = FixedHiddenMLP()
net(X)
"""结果输出:
tensor(-0.2160, grad_fn=<SumBackward0>)"""#混合搭配各种组合块的方法
class NestMLP(nn.Module):def __init__(self):super().__init__()self.net=nn.Sequential(nn.Linear(20,64),nn.ReLU(),nn.Linear(),nn.ReLU())self.linear=nn.Linear(32,16)def forward(self,X):return self.linear(self.net(X))chimera=nn.Sequential(NestMLP(),nn.Linear(16,20),FixedHiddenMLP())
chimera(X)
"""结果输出:
tensor(0.2183, grad_fn=<SumBackward0>)
"""

2.参数管理

2.1参数访问

#首先关注具有单隐藏层的多层感知机
import torch
from torch import nnnet=nn.Sequential(nn.Linear(4,8),nn.ReLU(),nn.Linear(8,1))
#nn.Linear(4,8)表示输入为4,输出为8
X=torch.rand(size=(2,4))
#X的形状是(2*4),表示有2个样本net(X)
"""结果输出:
tensor([[-0.0619],[-0.0489]], grad_fn=<AddmmBackward0>)""""""参数访问"""
print(net[2].state_dict())
#net[2]拿到的是最后一个线性层,权重是一个状态state,因为权重可以被改变
"""结果输出:
OrderedDict([('weight', tensor([[-0.0427, -0.2939, -0.1894,  0.0220, -0.1709, -0.1522, -0.0334, -0.2263]])),('bias', tensor([0.0887]))])
"""
#8个权重,1个偏置.输出的结果告诉我们一些重要的事情: 首先,这个全连接层包含两个参数,
#分别是该层的权重和偏置。 两者都存储为单精度浮点数(float32)。 注意,参数名称允许唯
#一标识每个参数,即使在包含数百个层的网络中也是如此。"""目标参数"""
print(type(net[2].bias))
print(net[2].bias)
print(net[2].bias.data)
"""结果输出:
<class 'torch.nn.parameter.Parameter'>
Parameter containing:
tensor([-0.0291], requires_grad=True)
tensor([-0.0291])"""
#参数是复合的对象,包含值、梯度和额外信息。 这就是我们需要显式参数值的原因。 除了值之外,
#我们还可以访问每个参数的梯度。net[2].weight.grad==None
"""结果输出:
True"""
#在上面这个网络中,由于我们还没有调用反向传播(没有计算loss,W,B没有更新,所以没有反向计算),
#所以参数的梯度处于初始状态。"""一次性访问所有参数"""
#当我们需要对所有参数执行操作时,逐个访问它们可能会很麻烦。 当我们处理更复杂的块
#(例如,嵌套块)时,情况可能会变得特别复杂, 因为我们需要递归整个树来提取每个子块的参数。 
#下面,我们将通过演示来比较访问第一个全连接层的参数和访问所有层。
print(*[(name,param.shape) for name,param in net[0].named_parameters()])
print(*[(name,param.shape) for name,param in net.named_parameters()])
"""结果输出:
('weight', torch.Size([8, 4])) ('bias', torch.Size([8]))
('0.weight', torch.Size([8, 4])) ('0.bias', torch.Size([8])) ('2.weight', torch.Size([1, 8]))'2.bias', torch.Size([1]))"""
#理解一下为什么是[8,4]因为这是权重X要和权重进行矩阵乘法,而#另一种访问网络参数的方式
net.state_dict()['2.bias'].data
"""结果输出:
tensor([-0.0291])""""""从嵌套块收集参数"""
def block1():return nn.Sequential(nn.Linear(4,8),nn.ReLU(),nn.Linear(),nn.ReLU())def block2():net=nn.Sequential()for i in range(4):#在这里嵌套net.add_module(f'block{i}',block1())#这里add和sequential的区别就是add可以传入一个字符串表示层数,功能是一样的#所以block2会嵌套4个block1return netrgnet=nn.Sequential(block2(),nn.Linear(4,1))
rgnet(X)
"""结果输出:
tensor([[-0.3078],[-0.3078]], grad_fn=<AddmmBackward0>)"""
#2*1是因为X是行数为2的矩阵,也就是有2个样本,而1是因为定义的最后linear层的输出特征为1。print(rgnet)
"""结果输出:
Sequential((0): Sequential((block 0): Sequential((0): Linear(in_features=4, out_features=8, bias=True)(1): ReLU()(2): Linear(in_features=8, out_features=4, bias=True)(3): ReLU())(block 1): Sequential((0): Linear(in_features=4, out_features=8, bias=True)(1): ReLU()(2): Linear(in_features=8, out_features=4, bias=True)(3): ReLU())(block 2): Sequential((0): Linear(in_features=4, out_features=8, bias=True)(1): ReLU()(2): Linear(in_features=8, out_features=4, bias=True)(3): ReLU())(block 3): Sequential((0): Linear(in_features=4, out_features=8, bias=True)(1): ReLU()(2): Linear(in_features=8, out_features=4, bias=True)(3): ReLU()))(1): Linear(in_features=4, out_features=1, bias=True)
)"""rgnet[0][1][0].bias.data
"""结果输出:
tensor([-0.2539,  0.4913,  0.3029, -0.4799,  0.2022,  0.3146,  0.0601,  0.3757])"""

首先关注具有单隐藏层的多层感知机:

2.2参数初始化

"""内置初始化"""
#首先调用内置的初始化器。 下面的代码将所有权重参数初始化为标准差为0.01的高斯随机变量, 
#且将偏置参数设置为0。
def init_normal(m)#m就是一个moduleif type(m)==nn.Linear:#如果是全连接层,也就是线性层nn.init.normal_(m.weight,mean=0,std=0.01)#均值维0,标准差0.01的初始化,下划线接在后面表示是一个替换函数,不是会返回一个值,#而是直接把weight给替换掉nn.init.zeros_(m.bias)net.apply(init_normal)
#apply就是调用net里面的所有module,挨个传入初始化模组,就是遍历一遍
net[0].weight.data[0],net[0].bias.data[0]
"""结果输出:
(tensor([-0.0128, -0.0141,  0.0062,  0.0028]), tensor(0.))"""#将所有参数初始化为给定的常数,比如初始化为1。
def init_constant(m):if type(m)==nn.Linear:nn.init.constant_(m.weight,1)nn.init.zeros_(m.bias)net.apply(init_constant)
net[0].weight.data[0],net[0].bias.data[0]
"""结果输出:
(tensor([1., 1., 1., 1.]), tensor(0.))""""""对某些块应用不同的初始化方法"""
#使用Xavier初始化方法初始化第一个神经网络层, 然后将第三个神经网络层初始化为常量值42。
def init_xavier(m):if type(m)==nn.Linear:nn.init.xavier_uniform_(m.weight)#为了数值稳定使每层的方差都相同,nn.init.xavier_uniform_采取的是均匀分布而不是正态分布def init_42(m):if type(m)==nn.Linear:nn.init.constant_(m.weight,42)    net[0].apply(init_xavier)
net[2].apply(init_42)
print(net[0].weight.data[0])
print(net[2].weight.data)
"""结果输出:
tensor([ 0.5236,  0.0516, -0.3236,  0.3794])
tensor([[42., 42., 42., 42., 42., 42., 42., 42.]])
""""""自定义初始化"""
#使用以下的分布为任意权重参数𝑤定义初始化方法:
def my_init(m):if type(m)==nn.Linear:print("Init",*[(name,param.shape) for name,param in m.named_parameters()][0])nn.init.uniform_(m.weight,-10,10)#张量将具有从 U ( − a , a )采样的值中生成值m.weight.data*=m.weight.data.abs()>=5#=m.weight.data的绝对值是不是大于等于5,如果是的话就保留,不是的话就重置为0net.apply(my_init)
net[0].weight[:2]
"""结果输出:
Init weight torch.Size([8, 4])
Init weight torch.Size([1, 8])tensor([[5.4079, 9.3334, 5.0616, 8.3095],[0.0000, 7.2788, -0.0000, -0.0000]], grad_fn=<SliceBackward0>)
"""#我们始终可以直接设置参数
net[0].weight.data[:]+=1
net[0].weight.data[0,0]=42
net[0].weight.data[0]
"""结果输出:
tensor([42.0000, 10.3334,  6.0616,  9.3095])""""""参数绑定"""
#我们希望在多个层间共享参数:我们可以定义一个稠密层,然后使用它的参数来设置另一个层的参数。
# 我们需要给共享层一个名称,以便可以引用它的参数
shared=nn.Linear(8,8)
net=nn.Sequential(nn.Linear(4,8),nn.ReLU(),shared,nn.ReLU(),shared,nn.ReLU(),nn.Linear(8,1))
#理论上第2,3层都是一样的net(X)
#检查参数是否相同
print(net[2].weight.data[0]==net[4].weight.data[0])
net[2].weight.data[0,0]=100
#确保它们实际上是同一个对象,而不是只是有相同的值
print(net[2].weight.data[0]==net[4].weight.data[0])
"""结果输出:
[ True  True  True  True  True  True  True  True]
[ True  True  True  True  True  True  True  True]
"""
#这个例子表明第二层和第三层的参数是绑定的。 它们不仅值相等,而且由相同的张量表示。 
#因此,如果我们改变其中一个参数,另一个参数也会改变。 这里有一个问题:当参数绑定时,
#梯度会发生什么情况? 答案是由于模型参数包含梯度, 因此在反向传播期间第二个隐藏层和
#第三个隐藏层的梯度会加在一起。

3.自定义层

3.1不带参数的层

#构造一个没有任何参数的自定义层
import torch
import tprch.nn.functional as F
from torch import nn#下面的CenteredLayer类要从其输入中减去均值。 要构建它,我们只需继承基础层类并实现前向传播功能。
class CenteredLayer(nn.module):def __init__(self):super().__init__()def forward(self,X):return X-X.mean()#向该层提供一些数据,验证它是否能按预期工作。
layer=CentetedLayer()
layer(torch.FloatTensor([1,2,3,4,5]))
"""结果输出:
tensor([-2., -1.,  0.,  1.,  2.])
"""
#由此可见每个数都减去了均值,因此整个向量的大小应该接近0#将层作为组件合并到更复杂的模型中。
net=nn.Sequential(nn.Linear(8,128),CenteredLayer())
#作为额外的健全性检查,我们可以在向该网络发送随机数据后,检查均值是否为0。 由于我们处理的
#是浮点数,因为存储精度的原因,我们仍然可能会看到一个非常小的非零数。
Y=net(torch.rand(4,8))
Y.mean()
"""结果输出:
tensor(7.4506e-09, grad_fn=<MeanBackward0>)
"""

3.2带参数的层

#实现自定义版本的全连接层。 回想一下,该层需要两个参数,一个用于表示权重,另一个用于表示
#偏置项。 在此实现中,我们使用修正线性单元作为激活函数。 该层需要输入参数:in_units和units,
#分别表示输入数和输出数。
class MyLinear(nn.Module):def __init__(self,in_units,units):super().__init__()self.weight=nn.Parameter(torch.randn(in_units,units))self.bias=nn.Parameter(torch.randn(units,))def forward(self,X):linear=torch.matmul(X,self.weight.data)+self.bias.datareturn F.relu(linear)#实例化MyLinear类并访问其模型参数。
linear=MyLinear(5,3)
linear.weight
"""结果输出:
Parameter containing:
tensor([[ 0.1775, -1.4539,  0.3972],[-0.1339,  0.5273,  1.3041],[-0.3327, -0.2337, -0.6334],[ 1.2076, -0.3937,  0.6851],[-0.4716,  0.0894, -0.9195]], requires_grad=True)"""#使用自定义层直接执行前向传播计算。
linear(torch.rand(2,5))
"""结果输出:
tensor([[0., 0., 0.],[0., 0., 0.]])"""#使用自定义层构建模型,就像使用内置的全连接层一样使用自定义层。
net=nn.Sequential(MyLinear(64,8),MyLinear(8,1))
net(torch.rand(2,64))
"""结果输出:
tensor([[0.],[0.]])
"""

4.读写文件

4.1加载和保存张量

import torch 
from torch import nn
from torch.nn import functional as F#对于单个张量,我们可以直接调用load和save函数分别读写它们。 这两个函数都要求我们提供
#一个名称,save要求将要保存的变量作为输入。
x=torch.arange(4)
torch.save(x,'x-file')x2=torch.load("x-file")
x2
"""结果输出:
tensor([0, 1, 2, 3])"""#可以存储一个张量列表,然后把它们读回内存。
y=torch.zeros(4)
torch.save([x,y],'x-files')
x2,y2=torch.load('x-files')
(x2,y2)
"""结果输出:
(tensor([0, 1, 2, 3]), tensor([0., 0., 0., 0.]))"""#甚至可以写入或读取从字符串映射到张量的字典。 当我们要读取或写入模型中的所有权重时,这很方便。
mydict={'x':x,'y':y}
torch.save(mydict,'mydict')
mydict2=torch.load('mydict')
mydict2
"""结果输出:
{'x': tensor([0, 1, 2, 3]), 'y': tensor([0., 0., 0., 0.])}"""

4.2加载和保存模型参数


class MLP(nn.module):def __init__(self):super().__init__()self.hidden=nn.Linear(20,256)self.output=nn.Linear(256,10)def forward(self,x):return self.output(F.relu(self.hidden(x)))net=MLP()
X=torch.randn(size=(2,20))
Y=net(X)#将模型的参数存储在一个叫做“mlp.params”的文件中
torch.save(net.state_dict(),'mlp.params')#为了恢复模型,我们实例化了原始多层感知机模型的一个备份。 这里我们不需要随机初始化
#模型参数,而是直接读取文件中存储的参数。
clone=MLP()
clone.load_state_dict(torch.load('mlp.params'))
clone.eval()
# train模式(net.train())和eval模式(net.eval())。一般的神经网络中,这两种模式是一样的,只有当模型中存在dropout和batchnorm的时候才有区别。
"""结果输出:
MLP((hidden): Linear(in_features=20, out_features=256, bias=True)(output): Linear(in_features=256, out_features=10, bias=True)
)"""#由于两个实例具有相同的模型参数,在输入相同的X时, 两个实例的计算结果应该相同。
Y_clone=clone(X)
Y_clone==Y
"""结果输出:tensor([[True, True, True, True, True, True, True, True, True, True],[True, True, True, True, True, True, True, True, True, True]])
"""

总结:

  • saveload函数可用于张量对象的文件读写。

  • 我们可以通过参数字典保存和加载网络的全部参数。

  • 保存架构必须在代码中完成,而不是在参数中完成。

参考:

https://www.cnblogs.com/jack-nie-23/p/16506630.html

python中枚举类的理解_python枚举类-CSDN博客

pytorch学习笔记:nn.Module类方法中部分方法详解_class net(nn.module)-CSDN博客

一、nn.Module() 【PyTorch读懂源码】 - 知乎
【torch.nn.init】初始化参数方法解读_nn.init.uniform_-CSDN博客

torch 中 nn.init.xavier_uniform_ 方法-CSDN博客

https://www.cnblogs.com/lusiqi/p/17177639.html
nn.Parameter()-CSDN博客

[Pytorch系列-30]:神经网络基础 - torch.nn库五大基本功能:nn.Parameter、nn.Linear、nn.functioinal、nn.Module、nn.Sequentia-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/336064.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

K2P路由器刷OpenWrt官方最新版本固件OpenWrt 23.05.2方法 其他型号的智能路由器OpenWrt固件刷入方法也基本上适用

最近路由器在开机时总出问题,于是就那他来开刀,直接刷一个OpenWrt官方最新版本的固件, 刷其他第三方的固件总是觉得不安全, 而且很多第三方固件都带了些小工具,始终会有安全隐患, 而且占用内存空间太多,本来这个东西就没有多少内存,于是就干脆刷一个官方的原始固件(才6.3M, 相…

网卡高级设置-提高网络环境

网卡高级设置&#xff0c;提高网络质量排除一些连接问题 一、有线网卡 1、关闭IPv6&#xff1b; 可以关闭协议版本6&#xff0c;因为它会引起一些网络连接问题&#xff0c;而且现在几乎用不到IP6。 2、关闭节约电源模式&#xff1b; 右击计算机->设备->设备管理器-&…

视频智能分析/边缘计算AI智能分析网关V4区域入侵检测算法如何配置?

边缘计算AI智能分析网关&#xff08;V4版&#xff09;部署了近40种AI算法模型&#xff0c;支持对接入的视频图像进行人、车、物、行为等实时检测分析&#xff0c;并上报识别结果&#xff0c;并能进行语音告警播放。算法配置后&#xff0c;即可对监控视频流进行实时检测&#xf…

陶瓷碗口圆度检测案例-原理概述

检测概述 随着社会的发展和人民生活水平的提高&#xff0c;现在市场不仅对陶瓷产品数量提出新的要求&#xff0c;还在质量上提出了更加严苛的标准。然而&#xff0c;由于日用陶瓷制品韧性较低&#xff0c;生产工艺比较特殊&#xff0c;成批生产时质量不易控制等特点&#xff0…

ESP32_ADC(Arduino)

ADC模数转换 ESP32集成了12位的逐次逼近式ADC&#xff0c;分别为ADC1模块ADC2模块&#xff0c;共支持18个模拟输入通道: ADC1模块&#xff1a;8个通道&#xff0c;32~39ADC2模块&#xff1a;10个通道&#xff0c;0&#xff0c;2&#xff0c;4&#xff0c;12 ~ 15&#xff0c;…

unity小程序websocket:nginx配置https (wss)转http (ws)及其他问题解决

目录 前言 实际运用场景 处理流程如下 nginx配置ssl和wss 配置过程中遇到的问题 1、无法连接服务器 2、通过IP可以访问&#xff0c;域名却不行 问题描述 解决 3、如何判断该域名是否备案了 前言 为了服务器网络的通用性&#xff0c;我们在实现移动端的游戏转微信小程序…

npm run dev,vite 配置 ip 访问

启动项目通过本地 ip 的方式访问 方式一.通过修改 package.json "scripts": {"dev": "vite --host 0.0.0.0",}, 方式二.通过修改 vite.config.ts export default defineConfig({plugins: [vue(), vueJsx()],server: { // 配置 host 与 port 方…

ChatGLM2-6B 大语言模型本地搭建

ChatGLM模型介绍&#xff1a; ChatGLM2-6B 是清华 NLP 团队于不久前发布的中英双语对话模型&#xff0c;它具备了强大的问答和对话功能。拥有最大32K上下文&#xff0c;并且在授权后可免费商用&#xff01; ChatGLM2-6B的6B代表了训练参数量为60亿&#xff0c;同时运用了模型…

2024年【R2移动式压力容器充装】考试资料及R2移动式压力容器充装理论考试

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 R2移动式压力容器充装考试资料根据新R2移动式压力容器充装考试大纲要求&#xff0c;安全生产模拟考试一点通将R2移动式压力容器充装模拟考试试题进行汇编&#xff0c;组成一套R2移动式压力容器充装全真模拟考试试题&a…

AI论文润色平台一览,让你的论文更加流畅易懂!

之前其实比较犹豫&#xff0c;是否应该整理一篇关于可辅助论文写作的在线平台的文章。因为论文这个事情&#xff0c;更重要的是要有个人的思考&#xff0c;要亲自动手写&#xff0c;这涉及到诚信的问题。然而&#xff0c;通过AI直接生成的论文可能很难通过查重和AI检测&#xf…

二、MyBatis 基本使用

本章概要 向SQL语句传参数据输入 Mybatis总体机制概括概念说明单个简单类型参数实体类类型参数零散的简单类型数据Map类型参数 数据输出 输出概述单个简单类型返回实体类对象返回Map类型返回List类型返回主键值实体类属性和数据库字段对应关系 CRUD强化练习mapperXML标签总结 …

4.MapReduce 序列化

目录 概述序列化序列化反序例化java自带的两种Serializable非Serializable hadoop序例化实践 分片/InputFormat & InputSplit日志 结束 概述 序列化是分布式计算中很重要的一环境&#xff0c;好的序列化方式&#xff0c;可以大大减少分布式计算中&#xff0c;网络传输的数…