代码随想录刷题题Day29

刷题的第二十九天,希望自己能够不断坚持下去,迎来蜕变。😀😀😀
刷题语言:C++
Day29 任务
● 01背包问题,你该了解这些!
● 01背包问题,你该了解这些! 滚动数组
● 416. 分割等和子集

1 动态规划:01背包问题,你该了解这些!

在这里插入图片描述
背包问题的理论基础重中之重是01背包

1.1 01 背包

01 背包:有n件物品和一个最多能背重量为w的背包。第i件物品的重量是weight[i],得到的价值是value[i]。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大

在这里插入图片描述

重量价值
物品0115
物品1320
物品2430

二维dp数组01背包
(1)确定dp数组以及下标的含义
dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。
在这里插入图片描述

(2)确定递推公式

1.不放物品i:由dp[i - 1][j]推出,即背包容量为j,里面不放物品i的最大价值,此时dp[i][j]就是dp[i - 1][j]。(其实就是当物品i的重量大于背包j的重量时,物品i无法放进背包中,所以背包内的价值依然和前面相同。)
2.放物品i:由dp[i - 1][j - weight[i]]推出,dp[i - 1][j - weight[i]] 为背包容量为j - weight[i]的时候不放物品i的最大价值,那么dp[i - 1][j - weight[i]] + value[i] (物品i的价值),就是背包放物品i得到的最大价值

dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);

(3)dp数组如何初始化

首先从dp[i][j]的定义出发,如果背包容量j为0的话,即dp[i][0],无论是选取哪些物品,背包价值总和一定为0。如图:
在这里插入图片描述
状态转移方程是由 i-1 推导出来,那么i为0的时候就一定要初始化
dp[0][j],即:i为0,存放编号0的物品的时候,各个容量的背包所能存放的最大价值。

那么很明显当 j < weight[0]的时候,dp[0][j] 应该是 0,因为背包容量比编号0的物品重量还小。
当j >= weight[0]时,dp[0][j] 应该是value[0],因为背包容量放足够放编号0物品

for (int j = 0; j < weight[0]; j++) {dp[0][j] = 0;
}
for (int j = weight[0]; j <= bagweight; j++) {dp[0][j] = value[0];
}

在这里插入图片描述
dp[0][j] 和 dp[i][0] 都已经初始化,其他下标的初始化什么数值都可以,因为都会被覆盖。

vector<vector<int>> dp(weight.size(), vector<int>(bagweight + 1, 0));
for (int j = weight[0]; j <= bagweight; j++) {dp[0][j] = value[0];
}

(4)遍历顺序
在这里插入图片描述
先遍历物品,然后遍历背包重量

for (int i = 1; i < weight.size(); i++) {for (int j = 0; j <= bagweight; j++) {if (j < weight[i]) dp[i][j] = dp[i - 1][j];else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);}
}

先遍历背包,再遍历物品

// weight数组的大小 就是物品个数
for(int j = 0; j <= bagweight; j++) { // 遍历背包容量for(int i = 1; i < weight.size(); i++) { // 遍历物品if (j < weight[i]) dp[i][j] = dp[i - 1][j];else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);}
}

(5)举例推导dp数组
在这里插入图片描述

C++:

void test_2_wei_bag_problem1() {vector<int> weight = {1, 3, 4};vector<int> value = {15, 20, 30};int bagweight = 4;// 二维数组vector<vector<int>> dp(weight.size(), vector<int>(bagweight + 1, 0));// 初始化for (int j = weight[0]; j <= bagweight; j++) {dp[0][j] = value[0];}for (int i = 1; i < weight.size(); i++) {for (int j = 0; j <= bagweight; j++) {if (j < weight[i]) dp[i][j] = dp[i - 1][j];else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);}}cout << dp[weight.size() - 1][bagweight] << endl;    
}
int main() {test_2_wei_bag_problem1();
}

2 动态规划:01背包理论基础(滚动数组)

背包最大重量为4。

物品为:

重量价值
物品0115
物品1320
物品2430

一维dp数组:上一层可以重复利用,直接拷贝到当前层。
dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。
(1)确定dp数组的定义
dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j]
(2)一维dp数组的递推公式

dp[j]有两个选择,一个是取自己dp[j] 相当于 二维dp数组中的dp[i-1][j],即不放物品i,一个是取dp[j - weight[i]] + value[i],即放物品i,指定是取最大的,毕竟是求最大价值

dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

(3)一维dp数组如何初始化
假设物品价值都是大于0的,所以dp数组初始化的时候,都初始为0
(4)一维dp数组遍历顺序

for (int i = 0; i < weight.size(); i++) {// 遍历物品for (int j = bagweight; j >= weight[i]; j--) {// 遍历背包容量dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);}
}

倒序遍历是为了保证物品i只被放入一次! 如果一旦正序遍历了,那么物品0就会被重复加入多次!

为什么二维dp数组遍历的时候不用倒序呢?
因为对于二维dp,dp[i][j]都是通过上一层即dp[i - 1][j]计算而来,本层的dp[i][j]并不会被覆盖!

(5)举例推导dp数组
在这里插入图片描述
C++:

void test_1_wei_bag_problem() {vector<int> weight = {1, 3, 4};vector<int> value = {15, 20, 30};int bagWeight = 4;// 初始化vector<int> dp(bagWeight + 1, 0);for(int i = 0; i < weight.size(); i++) { // 遍历物品for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);}}cout << dp[bagWeight] << endl;
}int main() {test_1_wei_bag_problem();
}

3 分割等和子集

416. 分割等和子集
在这里插入图片描述
思路:
背包问题,有N件物品和一个最多能背重量为W 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。

本题使用的是01背包,因为元素我们只能用一次。
把01背包问题套到本题:
(1)背包的体积为sum / 2
(2)背包要放入的商品(集合里的元素)重量为 元素的数值,价值也为元素的数值
(3)背包如果正好装满,说明找到了总和为 sum / 2 的子集。
(4)背包中每一个元素是不可重复放入。

动态规划
(1)确定dp数组以及下标的含义
01背包中,dp[j] 表示: 容量为j的背包,所背的物品价值最大可以为dp[j]
本题:dp[j]表示 背包总容量(所能装的总重量)是j,放进物品后,背的最大重量为dp[j]
(2)确定递推公式

01背包的递推公式为:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
本题,相当于背包里放入数值,那么物品i的重量是nums[i],其价值也是nums[i]。
所以递推公式:dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);

(3)dp数组如何初始化

dp[0]一定是0。
如果题目给的价值都是正整数那么非0下标都初始化为0就可以了,如果题目给的价值有负数,那么非0下标就要初始化为负无穷。
这样才能让dp数组在递推的过程中取得最大的价值,而不是被初始值覆盖了

(4)确定遍历顺序

for (int i = 0; i < nums.size(); i++) {for (int j = target; j >= nums[i]; j--) {// 每一个元素一定是不可重复放入,所以从大到小遍历dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);}
}

(5)举例推导dp数组
dp[j]的数值一定是小于等于j的,如果dp[j] == j 说明,集合中的子集总和正好可以凑成总和j
在这里插入图片描述
C++:

class Solution {
public:bool canPartition(vector<int>& nums) {int sum = 0;vector<int> dp(10001, 0);for (int i = 0; i < nums.size(); i++) {sum += nums[i];}if (sum % 2 == 1) return false;int target = sum / 2;// 开始 01背包for(int i = 0; i < nums.size(); i++) {for(int j = target; j >= nums[i]; j--) { // 每一个元素一定是不可重复放入,所以从大到小遍历dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);}}// 集合中的元素正好可以凑成总和targetif (dp[target] == target) return true;return false;}
};

时间复杂度: O ( n 2 ) O(n^2) O(n2)
空间复杂度: O ( n ) O(n) O(n),虽然dp数组大小为一个常数,但是大常数


鼓励坚持三十天的自己😀😀😀

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/336867.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Web应用防火墙是什么?聊聊领先WAF解决方案

数字化进程的加速发展&#xff0c;Web站点及各类应用的数量呈现爆发式增长态势。与此同时&#xff0c;利用Web漏洞进行攻击的事件也与日俱增&#xff0c;黑客攻击手段不断升级&#xff0c;包括各种拟人化自动化攻击、API攻击以及0day攻击等&#xff0c;给Web应用安全防护带来了…

下载 SQL Server Management Studio (SSMS)

下载 SQL Server Management Studio (SSMS) - SQL Server Management Studio (SSMS) | Microsoft Learn 下载了SSMS之后&#xff0c;就可以不在本地安装SQL SERVER了&#xff0c;可以直接通过SSMS连接服务器&#xff0c;如下图&#xff0c;输入服务器地址&#xff0c;登录名和密…

燃油车智能化时代将终结,长安汽车凭啥引领“数智新汽车”周期?

日前高工智能汽车研究院发布报告称&#xff0c;2024年将是新能源市场的新拐点&#xff0c;燃油车智能化时代即将终结&#xff0c;新能源和智能化将深度融合发展。 伴随着整车电子电气架构加速迈入中央计算-区域控制架构时代&#xff0c;智能电动汽车将从单一功能升级的智能化1…

自动化的运维管理:探究Kubernetes工作机制的奥秘

1 云计算时代的操作系统 Kubernetes 是一个生产级别的 容器编排平台 和 集群管理系统 &#xff0c;能够 创建、调度容器&#xff0c;监控、管理服务器。 容器是什么&#xff1f;容器是软件&#xff0c;是应用&#xff0c;是进程。服务器是什么&#xff1f;服务器是硬件&#…

实用Unity3D Log打印工具XDebug

特点 显示时间&#xff0c;精确到毫秒显示当前帧数&#xff08;在主线程中的打印才有意义&#xff0c;非主线程显示为-1&#xff09;有三种条件编译符(如下图) 注&#xff1a;要能显示线程中的当前帧数&#xff0c;要在app启动时&#xff0c;初始化mainThreadID字段条件编译符…

虹科技术丨PCAN网关设备:打通通信壁垒,LED指示灯编程示例

来源&#xff1a;虹科汽车智能互联 虹科技术丨PCAN网关设备&#xff1a;打通通信壁垒&#xff0c;LED指示灯编程示例 原文链接&#xff1a;https://mp.weixin.qq.com/s/hpxssnDeD-43x3tyHJbAtA 欢迎关注虹科&#xff0c;为您提供最新资讯&#xff01; 导读 在工业自动化、汽…

使用Ray Marching进行3D渲染

要使用Ray Marching渲染 3D 场景&#xff0c;我们需要为每个像素发射一条光线。通过选择屏幕上的一个点&#xff08;一个像素&#xff09;&#xff0c;并从视点绘制一条射线&#xff0c;我们可以确定它是否击中一个对象&#xff0c;并决定应该在该像素上绘制什么。使用着色器&a…

51-5 Transformer 论文精读

李沐&#xff08;沐神&#xff09;、朱毅讲得真的好&#xff0c;干货蛮多&#xff0c;醍醐灌顶。编码器、解码器、多头自注意力、自回归的概念没搞清楚的话&#xff0c;值得认真读很多遍&#xff0c;甚至可以当成多模态大模型基础课程学习。 今天我们将讲的是transformer这个模…

CentOS中开启mysql挂载

挂载的作用其实说白了就是备份。防止数据库文件损害或者数据库被误删导致数据丢失。 创建一个文件名为my.cnf内容如下 # Copyright (c) 2017, Oracle and/or its affiliates. All rights reserved. # # This program is free software; you can redistribute it and/or modif…

C语言中的指针变量p,特殊表达式p[0] ,(*p)[0],(px+3)[2] ,(*px)[3]化简方法

一.已知以下代码&#xff0c;请问以下 式子p[0] &#xff0c;p[1] &#xff0c;(*p)[0] &#xff0c;(*p)[1] 是什么意思&#xff1f; int A[3] {1,2,3}; int (*p)[3] &A; 因为前面的嵌入式C语言基础的章节中说过&#xff0c;数组下标其实就是数组首元素的地址往上偏…

FPGA 高端项目:基于 SGMII 接口的 UDP 协议栈,提供2套工程源码和技术支持

目录 1、前言免责声明 2、相关方案推荐我这里已有的以太网方案本协议栈的 1G-UDP版本本协议栈的 10G-UDP版本本协议栈的 25G-UDP版本1G 千兆网 TCP-->服务器 方案1G 千兆网 TCP-->客户端 方案10G 万兆网 TCP-->服务器客户端 方案 3、该UDP协议栈性能4、详细设计方案设…

使用pytorch构建图卷积网络预测化学分子性质

在本文中&#xff0c;我们将通过化学的视角探索图卷积网络&#xff0c;我们将尝试将网络的特征与自然科学中的传统模型进行比较&#xff0c;并思考为什么它的工作效果要比传统的方法好。 图和图神经网络 化学或物理中的模型通常是一个连续函数&#xff0c;例如yf(x₁&#xff…