【语义解析:连接自然语言与机器智能的桥梁】

语义解析:连接自然语言与机器智能的桥梁

语义解析技术可以提高人机交互的效率和准确性,在自然语言处理、数据分析、智能客服、智能家居等领域都有广泛的应用前景。特别是在大数据时代,语义解析能够帮助企业更快速地从大量的数据中获取有用的信息,从而提高决策效率。

01 语义解析的应用场景

场景一:

在一个繁忙的办公室里,李经理正在与他的团队成员进行一项重要的项目。他们需要不断地从公司的数据库中提取各种数据来支持他们的分析和决策。然而,团队成员们并非都是数据库专家,复杂的 SQL 查询语句常常让他们感到困惑和效率低下。

在这个关键时刻,李经理决定引入 NL2SQL 技术,为团队带来一种全新的数据交互体验。

NL2SQL(自然语言到 SQL)技术允许用户通过自然语言描述他们想要查询的数据,然后自动将这些描述转化为 SQL 查询语句。这对于非数据库专家来说是一个巨大的福音,因为它消除了编写复杂 SQL 语句的需要。

李经理的团队成员小王想查找去年销售额超过 100 万的所有产品。在没有 NL2SQL 之前,他可能需要花费大量时间去编写 SQL 语句,或者请教数据库专家。但现在,他只需简单地对系统说:“请给我去年销售额超过 100 万的所有产品。” NL2SQL 系统立即理解了他的需求,并将这个自然语言描述转化为相应的 SQL 查询语句,然后执行查询。

几秒钟后,小王就得到了他所需的数据,这大大节省了他的时间和精力。他不再需要担心 SQL 语句的语法和结构,也不再需要等待数据库专家的帮助。他可以专注于分析和决策,而不是纠结于数据提取的细节。

NL2SQL 不仅提高了团队的效率,还增强了团队成员与数据库之间的交互体验。它使得数据库查询变得更加直观、自然和高效,从而加速了项目的进展并提高了决策的准确性。李经理对他的这个决定感到非常满意,NL2SQL 技术为他的团队带来了实实在在的便利和价值。

场景二:

在一个繁忙的图书馆中,读者们穿梭在书架间,努力寻找他们感兴趣的书籍。图书馆管理员小杨则站在咨询台后面,不断回答着读者们关于书籍、作者和内容的各种问题。然而,随着图书馆藏书量的不断增加,她发现自己越来越难以迅速准确地回答所有问题。

在这个背景下,图书馆引入了 KBQA(知识库问答)系统,为读者和管理员带来了前所未有的便利。

KBQA 系统允许用户通过自然语言提问,并从图书馆的知识库中自动检索相关信息来回答问题。这个知识库包含了图书馆所有书籍的详细信息,包括作者、出版日期、内容摘要等。

一天,一位读者走到咨询台,询问:“请问有没有关于人工智能的最近出版的书籍?” 在 KBQA 系统之前,小杨可能需要在图书馆目录中进行繁琐的搜索,或者让读者自己去查找。但现在,她只需简单地将问题输入到 KBQA 系统中。

系统立即理解了问题,并在知识库中进行了快速检索。检索内容是所有具有人工智能属性的书籍的信息。几秒钟后,它返回了几本最近出版的人工智能相关书籍的信息,包括书名、作者和出版日期。小杨将这些信息展示给读者,读者非常满意地离开了咨询台。

KBQA 系统的引入不仅提高了图书馆服务的质量和效率,还增强了读者与图书馆之间的交互体验。读者们可以更加轻松地找到他们感兴趣的信息,而管理员也能更高效地回答读者的问题。这种自然、直观和高效的人机交互方式,使得图书馆成为了一个更加便捷、智能的学习和交流场所。

从上述两个场景中,我们可以明显看到语义解析在人机交互中的巨大价值。无论是 NL2SQL 还是 KBQA,它们的核心都在于对用户输入的自然语言进行深入的语义理解,并将其转化为机器可执行的指令或查询。这种转化能力不仅打破了用户与复杂数据库或知识库之间的障碍,让非专业用户也能轻松进行高级的数据操作或信息查询,还大大提高了交互的效率和准确性。更重要的是,语义解析技术使得机器能够更智能地响应用户需求,为用户提供更加个性化、精准的服务,从而增强了用户的使用体验和满意度。因此,语义解析不仅是实现自然、高效人机交互的关键,也是推动信息化社会向更高层次发展的重要驱动力之一。

通过自然语言查询数据库的意义在于提高效率和便捷性。随着技术的发展,知识存储方式也在不断演进,其中结构化和参数化是两种主要的存储方式。随着大模型运动的愈演愈烈,参数化存储可以将知识融入模型中,使得在输入时能够进行编码表示,这种方式有望逐渐取代传统的知识图谱。然而,即使机器学习模型将来达到与人类相当的水平,数据库和知识库仍然是必不可少的。因为知识图谱可能会演变成一种适合机器使用的机器词典,而不是现在我们所熟知的样子。所以参数化存储方式并不能完全替代结构化存储方式,也就是未来还是需要以数据库为代表的结构化知识存储方式。人要访问这些结构化知识,最为便捷的方式是通过自然语言进行查询。

通过自然语言查询数据库,用户可以以更加直观和高效的方式与数据库进行交互。相比于传统的查询语言,自然语言更加符合人类的思维习惯,使得非专业人士也能够轻松地从数据库中获取信息。这种交互方式的改进可以极大地提高工作效率,减少学习成本,并推动数据库的广泛应用。

通过自然语言查询数据库的意义在于适应知识存储方式的变革,提高工作效率和便捷性,推动数据库技术的发展和应用。同时,语义解析技术的发展和应用也为实现这一目标提供了有力的支持。

02 语义解析和大模型的关系

大规模预训练语言模型和语义解析技术就像是人工智能领域的两位超级英雄,它们各自有着独特的超能力,但当它们联手时,就能创造出更强大的力量。

大规模预训练语言模型,比如我们熟知的 ChatGPT,就像是一个语言天才。它经过大量的训练,能够理解和生成各种复杂的文本。举个例子,如果你让它写一篇关于 “环保知识” 的文章,它能够轻松地为你生成一篇结构清晰、内容丰富的文稿。或者,当你感到孤单时,它可以陪你聊天,为你提供情感上的支持。它的优势在于能够处理各种自然语言任务,就像一个全能选手一样。

然而,即使是全能选手也有它的局限性。当面对大量的结构化数据时,比如数据库里的信息,大规模预训练语言模型就显得有些力不从心了。例如,假设你是一家电商公司的客服机器人,用户想查询 “过去一年内,销量最高的商品是什么?”。对于大模型而言,要回答此问题需要将整个销售数据库作为输入,这显然是不现实的。此时,形式化语言作为与结构化数据交互的媒介变得尤为重要。通过语义解析技术,我们可以将用户的自然语言查询转化为 SQL 查询语句:“SELECT Product FROM SalesData ORDER BY QuantitySold DESC LIMIT 1”,从而直接对接数据库,获取所需信息。

此外,大模型的输出内容具有不可预测性。由于是生成式的模型,它们可能会在某些情况下产生不合理或不准确的内容。比如,当用户询问 “太阳是从哪个方向升起的?” 时,大模型可能会因为训练数据中的某些偏差或模型本身的随机性,产生 “太阳从西方升起” 的错误回答。而基于语义解析的方法由于依赖准确的结构化数据库(例如知识图谱中保存着太阳的一个属性是从东方升起),因此更倾向于给出确定的、基于知识的答案。

还有另一个例子是关于知识更新的。假设你是一位科研人员,昨天有一个重大的科学发现被公布,而今天你就想了解这个发现的具体内容。对于大模型来说,除非这个发现已经被加入到其训练数据中并重新训练了模型,否则它无法提供这一最新信息。但对于基于语义解析和数据库的方法,只需简单地更新数据库即可。这就像是你直接查阅最新的科研论文一样方便。

这时候,就需要另一位超级英雄——语义解析技术闪亮登场了。语义解析技术就像是一个精准的翻译官,它能够将自然语言转化为计算机能够理解的语言。比如,在智能家居系统中,你可以通过语音命令控制家里的灯光、音乐等设备。当你说 “打开客厅的灯” 时,语义解析技术会将你的语音转化为计算机能够理解的指令,从而实现灯光的控制。它的优势在于能够精确理解用户的意图,并提供可靠的答案。

这两位超级英雄的结合,就像是一场完美的舞蹈。大规模预训练语言模型提供了强大的语言生成和理解能力,而语义解析技术则为特定任务提供了精确的支持。它们的互补关系使得人工智能能够更好地理解和回应人类的需求,为我们的生活带来更多的便利和乐趣。

所以,不要小看传统的语义解析技术哦!在这个大模型的时代,它依然发挥着不可替代的作用。只有当我们充分利用两者的优势,才能实现更高效、更智能的自然语言处理体验!

延伸阅读

image-20240110100537747

语义解析:自然语言生成 SQL 与知识图谱问答实战

易显维, 宁星星 著

领域专家联袂推荐

语义解析大赛获奖者撰写

满足工业级应用安全、精准需求

弥合大模型的不足

本书购买链接

推荐语:

语义解析技术能解决大模型无法保证输出的形式语言可靠性和输出答案真实性的问题。本书由语义解析大赛获奖者撰写,通过本书的学习,读者可以了解 NLP 的相关技术,掌握自然语言生成 SQL 和知识图谱问答的实现方法。

剖析语义解析技术原理与实践,涵盖机器翻译、模板填充、强化学习、GNN、中间表达五大技术方向,并随书提供案例代码。

image-20240110100556841

本书购买链接

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/337193.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【开源商城推荐-LGPL-3.0】ts-mall 聚惠星商城

dts-shop: 聚惠星商城 DTS-SHOP,基于 微信小程序 springboot vue 技术构建 ,支持单店铺,多店铺入驻的商城平台。项目包含 微信小程序,管理后台。基于java后台语言,已功能闭环,且达到商用标准的一套项目体…

【EI会议征稿通知】第五届计算机信息和大数据应用国际学术会议(CIBDA 2024)

第五届计算机信息和大数据应用国际学术会议(CIBDA 2024) 2024 5th International Conference on Computer Information and Big Data Applications 第五届计算机信息和大数据应用国际学术会议(CIBDA 2024)将于2024年4月26-28日在…

Python pip 常用指令

前言 Python的pip是一个强大的包管理工具,它可以帮助我们安装、升级和管理Python的第三方库。以下是一些常用的pip指令。 1. 安装第三方库 使用pip安装Python库非常简单,只需要使用pip install命令,后面跟上库的名字即可。 # 安装virtuale…

springboot——消息中间件

消息的概念 从广义角度来说,消息其实就是信息,但是和信息又有所不同。信息通常被定义为一组数据,而消息除了具有数据的特征之外,还有消息的来源与接收的概念。通常发送消息的一方称为消息的生产者,接收消息的一方称为…

使用PAI-DSW搭建基于LangChain的检索知识库问答机器人

教程简述 在本教程中,您将学习如何在阿里云交互式建模(PAI-DSW)中,基于LangChain的检索知识库实现知识问答。旨在建立一套对中文场景与开源模型支持友好、可离线运行的知识库问答解决方案。 LangChain是一个开源的框架&#xff0c…

Citrix找不到ICAWebWrapper.msi所在的文件夹的路径

在Citrix Workspace启动虚拟机是出现 首先解压Citrix Receiver.exe,然后在里面找到CAWebWrapper.msi这个东西,将放入上图中找不到的路径下可以解决这个上述问题。

浏览器缓存引发的odoo前端报错

前两天,跑了一个odoo16项目,莫名其妙的前端报错, moment.js 报的错, 这是一个时间库,不是我自己写的代码,我也没做过任何修改,搞不清楚为什么报错。以为是odoo的bug,所以从gitee下载…

Git删除远程仓库某次提交记录后的所有提交

1、鼠标右键->git bash here,然后cd切换到代码目录; 2、git log查看提交记录,获取commit id 3、git reset commit id(commit id指要保留的最新的提交记录id) 4、git push --force,强制push 如果出现…

AIGC ChatGPT4 教你如何制作动态图表,完整代码

图表效果如下: 根据选择不同的年份图表会进行自动显示。 这样的效果直接可以用ChatGPT 4来完成。 代码单独复制出来。 分为两部分a.html与a.js HTML部分如下: <!DOCTYPE html> <html><head><meta charset="utf-8"><title>EChart…

java基础 -02java集合之 List,AbstractList,ArrayList介绍

补充上篇 AbstractCollection < E > 在正式List之前&#xff0c;我们先了解我们补充上篇Collection接口的拓展实现&#xff0c;也就是说当我我们需要实现一个不可修改的Collection的时候&#xff0c;我们只需要拓展某个类&#xff0c;也就是AbstractCollection这个类&a…

CentOS安装docker及一些命令

目录 1. CentOS8系统停止维护&#xff0c;需要换源 2. yum安装gcc相关 3. 安装需要的软件包 4. 设置阿里镜像源 5. 要安装特定版本&#xff0c;首先列出存储库中的可用版本 6. 安装 7. 查看Docker版本 8. 设置开机启动&关闭开机启动 9. 启动docker前&#xff0c;一…

LTESniffer:一款功能强大的LTE上下行链路安全监控工具

关于LTESniffer LTESniffer是一款功能强大的LTE上下行链路安全监控工具&#xff0c;该工具是一款针对LTE的安全开源工具。 该工具首先可以解码物理下行控制信道&#xff08;PDCCH&#xff09;并获取所有活动用户的下行链路控制信息&#xff08;DCI&#xff09;和无线网络临时…