FaceChain-FACT:免训练的丝滑体验,秒级别的人像生成

FaceChain-FACT:免训练的丝滑体验,秒级别的人像生成

在这里插入图片描述

项目主页:FaceChain-fact:Face Adapter for Human AIGC

github项目:https://github.com/modelscope/facechain

1.介绍

作为AI人像写真开源项目的佼佼者,FaceChain凭借其丰富多样的风格模版和卓越的人像保真度,深受社区的喜爱并已在商业应用中得到了广泛的应用。近期,FaceChain团队推出了全新的版本——FaceChain FACT。这一创新版本摒弃了传统的人物模型训练过程,能够直接生成zero-shot目标人像,引领AI人像生成进入了无需训练的单阶段时代。

你是否曾经因为相册里只有寥寥几张照片而无法训练自己的数字形象而感到苦恼?或者因为需要等待20分钟左右的人物形象训练而感到焦急?目前市场上的AI写真大多采用“训练+生成”的两阶段模式,既需要庞大的形象数据支撑,也需要一定的训练时间。这种模式增加了用户的使用成本。面对这一问题,FaceChain给出了解决方案:无需大量数据,无需训练等待,甚至无需训练,只需要一张图片10秒钟即可立即生成AI写真!

2.原理

FaceChain FACT(Face Adapter)之所以能够跳过训练阶段,是因为它经过了百万级别的写真数据训练,从而使得Stable Diffusion具备了强大的人脸重建能力。与传统的双阶段人像生成方法不同,FaceChain FACT重新构建了Stable Diffusion模型的架构,使其能够将人脸信息作为独立分枝的条件,平行于文本信息一起送入模型中进行推理。通过这种方式,FaceChain FACT能够更高效地处理人脸重建任务,从而避免了繁琐的训练阶段。FACT整个框架如下图所示:
在这里插入图片描述

为了更全面地提取人脸的细节信息,FACT采用了在海量人脸数据上预训练的基于Transformer架构的人脸特征提取器。与CNN架构的特征不同,基于Transformer架构的特征能够更好的适应Stable Diffusion的结构。通过这种方式,FACT能够更精确地保留人脸的细节特征,从而实现高清的人脸重建。


在这里插入图片描述

为了确保Stable Diffusion的原有功能得到充分保留,FACT作为独立的adapter层被插入到原始Stable Diffusion的block中,并在训练时固定原始block参数,仅对adapter进行训练。此外,人脸特征与文本特征是相互独立的,平行送入block中,避免了彼此之间的干扰。通过调整人脸信号的权重,用户可以灵活地调节生成效果,从而在保持Stable Diffusion原有的文生图功能的同时,平衡人脸的保真度与泛化性。

3.效果

在FACT的加持下,FaceChain的人像生成体验又有了质的飞跃。

1.在生成速度方面,FaceChain-FACT成功摆脱了冗长繁琐的训练阶段,将定制人像的生成时间大幅缩短了百倍。现在,整个生成过程仅需10s左右,为用户带来了无比流畅的使用体验。

2.在生成效果方面,FaceChain-FACT成功提升了人脸的细腻程度,使其更加逼近真实的人像效果。通过高度保留的人脸细节信息,确保了生成写真效果既惊艳又自然。FaceChain海量的精美风格模版,又为生成的人像注入了艺术生命力。
在这里插入图片描述

在这里插入图片描述


在这里插入图片描述

FaceChain-FACT的诞生,将为用户开启前所未有的高质量AI写真体验。除了在生成速度与质量上的显著提升,FaceChain还提供丰富的API接口,让开发者可以根据自己的需求进行定制化开发。无论是想要创建自己的AI写真应用,还是在现有项目中集成FaceChain的功能,都可以轻松实现。我们深知创新与定制化的重要性,因此我们将不断探索和加入新的风格模版,以及更多有趣的功能。我们热忱欢迎对开源技术感兴趣的朋友们加入我们,共同引领AIGC文生图领域迈向崭新的时代!

4.参考

项目主页:FaceChain-fact:Face Adapter for Human AIGC

github项目:https://github.com/modelscope/facechain

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/337324.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

DHSP和DNS

一、服务程序 1.1DHCP定义 DHCP(动态主机配置协议)是一个局域网的网络协议。指的是由服务器控制一段IP地址范围,客户机登录服务器时就可以自动获得服务器分配的IP地址和子网掩码。默认情况下,DHCP作为Windows Server的一个服务组…

R2机器人加载棋盘与棋子模型,对urdf、sdf的解释(区分srdf)

1、概述 urdf、sdf、srdf文件都属于xml的规范格式,解释分别如下:urdf(unified robot description format)叫做"统一机器人描述格式",主要目的就是提供一种尽可能通用的机器人描述规范,这样对于机器人的描述就可以互相移…

复合机器人作为一种新型的智能制造装备高效、精准和灵活的生产方式

随着汽车制造业的快速发展,对于高效、精准和灵活的生产方式需求日益增强。复合机器人作为一种新型的智能制造装备,以其独特的优势在汽车制造中发挥着越来越重要的作用。因此,富唯智能顺应时代的发展趋势,研发出了ICR系列的复合机器…

第三次面试总结 - 吉云集团 - 全栈开发

🧸欢迎来到dream_ready的博客,📜相信您对专栏 “本人真实面经” 很感兴趣o (ˉ▽ˉ;) 专栏 —— 本人真实面经,更多真实面试经验,中大厂面试总结等您挖掘 目录 总结(非详细) 面试内…

QT6 SQLITE3 编译提示“Driver not loaded“

下载64位的 这两个文件放到如下图目录下 编译通过

从像素到洞见:图像分类技术的全方位解读

在本文中,我们深入探讨了图像分类技术的发展历程、核心技术、实际代码实现以及通过MNIST和CIFAR-10数据集的案例实战。文章不仅提供了技术细节和实际操作的指南,还展望了图像分类技术未来的发展趋势和挑战。 一、:图像分类的历史与进展 历史回…

跑代码相关 初始环境配置

是看了这个视频:深度学习python环境配置_哔哩哔哩_bilibili 总结的个人笔记 这个是从零开始配python环境的比较好的经验教程: 深度学习python的配置(Windows) - m1racle - 博客园 (cnblogs.com) 然后关于CUDA和cuDNN&#xff…

专业课128分总分400+南京理工大学818信号系统与数字电路南理工考研经验分享

专业课128分总分400南京理工大学818信号系统与数字电路南理工电光院考研经验分享,希望自己的经历对大家有借鉴。 我是在六月底确认自己保不上研然后专心备考的,时间确实比较紧张。虽然之前暑假看了一点高数,但因为抱有保研的期望&#xff0c…

JWT的初级认识

文章目录 一.什么是JWT二.JWT能够做什么1.授权2.信息交换 三.为什么我们使用JWT传统的基于session的认证流程基于JWT认证1.认证流程2.jwt优势 四.JWT的结构是什么Header的组成4.2 Header4.3 Payload4.4 Signature签名目的 五.使用JWT5.1 引入JWT依赖5.2 生成token5.3 根据令牌和…

Java学习笔记-day03-类名.this:内部类引用外部类实例

类名.this是啥意思? 今天在看尚硅谷的课程时里面讲了这么一句话: 集合在遍历时需要先创建一个容器,存放集合的数据,这样做浪费内存 想去验证下,就翻了翻ArrayList的迭代过程源码 在ArrayList的迭代器类Itr(…

电子化以后如何申请软件著作权

​ 申请地址:中国版权登记业务平台 附件: 软件著作权设计说明书模板(含填写说明).docx 软件著作权源程序模板.docx 软件著作权前期开发说明、合作开发协议、版本说明、法人证明、授权书模板.docx 注册、登录和实名认证 首先访问…

系列十、Java中的八种基本数据类型

一、Java中的八种基本数据类型 1.1、概览 1.2、备注 byte最大值:127 ,byte最小值:-128 short最大值:32767 ,short最小值:-32768 int最大值:2147483647 ,int最小值:-2147483648 long最大值:9…