机器学习 -- 余弦相似度

场景

我有一个 页面如下(随便找的):

我的需求是拿到所有回答的链接,在这里插入图片描述
再或者我在找房子网上,爬到所有的房产信息,我们并不想做过多的处理,我只要告诉程序,请帮我爬一个类似 xxx 相似度为0.5的就可以了,然后我自会写一小段代码去给数据清洗,这就免去了每次不同网站写不同的一套脚本的痛苦。这里就用到了 余弦相似度

余弦相似度

余弦相似度,又称为余弦相似性,是通过测量两个向量的夹角的余弦值来度量它们之间的相似性。两个方向完全相同的向量的余弦相似度为1,而两个彼此相对的向量的相似度为-1。 注意,它们的大小并不重要,因为这是方向的度量。

余弦定理:
在这里插入图片描述
所以余弦的计算公式如下:
在这里插入图片描述
有向量 a,b 他们的余弦值的公式是:
在这里插入图片描述
这个可能和k近邻算法听起来有些相似。但是也有不同

余弦相似度通常用于计算两个向量间的相似度,尤其常见于文本处理中。它通过测量两个向量间夹角的余弦值来判断它们的相似度。而k近邻算法是一种基于实例的学习或非泛化学习,它不试图构造一个通用内部模型,而是简单地存储实例数据。在分类时,新的数据点会被分配到它最近邻的类别。

所以余弦相似度更适合比较文本的相似程度,而k近邻算法常用于分类问题

优缺点

余弦相似度是一种测量两个向量在方向上的相似度的度量。它广泛用于文本分析,特别是在计算文档或文本片段之间的相似性时。

优点

1.不受大小影响:余弦相似度仅考虑向量间的角度,而不受其大小(即向量的长度或幅度)的影响,这使得它特别适用于文本数据,其中词频(长度)可能不是很重要。

2.效率较高:在稀疏数据集(如文本数据)上计算余弦相似度通常比其他相似度测量更高效。
适合高维数据:它适用于高维数据集,例如文本数据,其中每个维度代表一个不同的单词。

缺点

1.不考虑非共有特征:仅考虑两个向量共有的特征(即同时在两个向量中出现的元素),这可能会忽略某些重要信息。

2.对数据分布敏感:在某些情况下,数据的分布会影响余弦相似度的结果,尤其是当两个向量的长度相差悬殊时。

业务应用

1.获取html文本内容,我有两个html文件(获取html很容易,自动化和http请求都可以做到,但是要注意robot.txt协议),h6是一个整体的大html ,h7是案例html,我要拿的是 所有回答的链接,所以h7就是随机一个链接的html

file_path = 'D:/herche_ai/h6.html'  
with open(file_path, 'r', encoding='utf-8') as file:html_content = file.read()file_path = 'D:/herche_ai/h7.html' 
with open(file_path, 'r', encoding='utf-8') as file:target_html = file.read()
  1. 构建特征向量,我们利用BeautifulSoup将所有元素都趴下来,随后我们将其转为字符串表示
def build_feature_vector(html):"""构建特征向量"""soup = BeautifulSoup(html, 'html.parser')elements = soup.find_all()elements_str = [element_to_string(el) for el in elements]return elements_str, elements
def element_to_string(element):"""将元素转换为字符串表示"""return f"{element.name} {' '.join([f'{k}={v}' for k, v in element.attrs.items()])}"

3.构建源html和目标html的特征

# 构建原始html特征向量html_elements_str, html_elements = build_feature_vector(html)
# 构建目标html特征向量target_elements_str, _ = build_feature_vector(target_html)

4.处理文本

    vectorizer = CountVectorizer().fit(html_elements_str + target_elements_str)

CountVectorizer主要用于文本处理,它通过计数每个单词在文本中出现的频率来将文本转换为数值向量。这个过程可以分为以下几个步骤:
分词:将每个文本(在这种情况下是HTML元素的字符串表示)分割成单词或标记。
构建词汇表:从所有文本中提取出所有不同的单词,构建一个词汇表。
计数:对于每个文本,计算词汇表中每个单词的出现次数。
转换为向量:每个文本最终被转换为一个向量,向量的每个元素代表词汇表中对应单词的出现次数。

5.将两个html文本转为向量数值

 html_vec = vectorizer.transform(html_elements_str)target_vec = vectorizer.transform(target_elements_str)

6.比较相似度并且拿出相似度大于0.5的元素

similarities = cosine_similarity(target_vec, html_vec)similar_elements = []for index, similarity in enumerate(similarities[0]):if similarity >= threshold:similar_elements.append(html_elements[index])return similar_elements

7.顺利拿到h6 html中所有和h7相似的元素

结束

余弦相似度应用爬虫场景结束

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/337528.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

golang并发安全-select

前面说了golang的channel, 今天我们看看golang select 是怎么实现的。 数据结构 type scase struct {c *hchan // chanelem unsafe.Pointer // 数据 } select 非默认的case 中都是处理channel 的 接受和发送,所有scase 结构体中c是用来存储…

秒变办公达人,只因用了这5款在线协同文档app!

在日常工作中,我们不可避免地需要处理各种文档,有时你可能会为如何高效地管理这些文档而感到烦恼,或是不知道如何挑选合适的在线文档工具? 不用担心!在这篇文章中,我们将介绍5个好用的在线文档工具App&…

Hive精选10道面试题

1.Hive内部表和外部表的区别? 内部表的数据由Hive管理,外部表的数据不由Hive管理。 在Hive中删除内部表后,不仅会删除元数据还会删除存储数据, 在Hive中删除外部表后,只会删除元数据但不会删除存储数据。 内部表一旦…

图像分类任务的可视化脚本,生成类别json字典文件

1. 前言 之前的图像分类任务可视化,都是在train脚本里, 用torch中dataloader将图片和类别加载,然后利用matplotlib库进行可视化。 如这篇文章中:CNN 卷积神经网络对染色血液细胞分类(blood-cells) 在分类任务中,必定…

SSM+mysql电影推荐系统-计算机毕业设计源码030873

目 录 摘 要 Abstract 第1章 前 言 1.1 研究背景 1.2 研究现状 1.3 系统开发目标 第2章 技术与原理 2.1 开发技术 2 2.2 ssm框架介绍 2 2.3 MySQL数据库 2 2.4 B/S结构 2 第3章 需求分析 3.1 需求分析 3.2 系统可行性分析 3.3 项目设计目标与原则 3.4…

软件测试工程师经典面试题总结

一、接口测试如何设计测试用例? 首先,接口测试用例与其他测试用例是一样的,都是为了证明程序存在错误,其出发点相同;接口测试用例的对象是接口,需要验证各个系统及组件间的接口;其三是接口测试的…

2019年认证杯SPSSPRO杯数学建模B题(第一阶段)外星语词典全过程文档及程序

2019年认证杯SPSSPRO杯数学建模 基于方差分布的方法对未知语言文本中重复片段的自动搜索问题的研究 B题 外星语词典 原题再现: 我们发现了一种未知的语言,现只知道其文字是以 20 个字母构成的。我们已经获取了许多段由该语言写成的文本,但…

【Vue2】一个数组按时间分割为【今年】和【往年】俩个数组

一. 需求 后端返回一个数组,前端按时间维度将该数组的分割为【今年】和【往年】俩个数组后端返回的数组格式如下 timeList:[{id:1,billTime:"2024-01-10",createTime:"2024-01-10 00:00:00",status:0},{id:2,billTime:"2022-05-25"…

Prometheus实战篇:Prometheus监控docker

Prometheus实战篇:Prometheus监控docker 准备环境 监控docker 为了能够获取到Docker容器的运行状态,用户可以通过Docker的stats命令获取当前主机上运行容器的统计信息,可以查看容器的CPU利用率,内存使用量,网络IO总量以及磁盘IO总量等信息. docker stats除了使用命令以外,用户…

安达发|APS排程系统之产品工艺约束

在制造业中,生产计划和排程是至关重要的环节。为了提高生产效率、降低成本并满足客户需求,企业需要采用先进的生产计划和排程系统。APS(Advanced Planning and Scheduling,高级计划与排程)系统是一种集成了多种先进技术…

如何在simulink中怎么获取足端轨迹代码解释?

在使用Java代码框架统计用户获取足端轨迹时,我们可以使用Simulink的外部接口功能和Java的网络编程来实现。 我们需要在Simulink中配置外部接口以便与Java进行通信。可以使用Simulink中的TCP/IP或UDP模块来实现网络通信。假设我们选择TCP/IP模块。 足端轨迹是机器人运…

把图表题注编号由“一.1”改为“1.1“ (方法一)

前置设置: 手打章节标题,“绪论”,“ 相关理论和技术方法”。给章节标题设置样式 “标题一”,设置为一级标题。打开导航窗格,可以不开,我纯粹是为了操作方便。 1、选中第一章的标题--“绪论”,…