离散数学-二元关系

4.1关系的概念

1)序偶及n元有序组

由两个个体x和y,按照一定顺序排序成的、有序数组称为有序偶或有序对、二元有序组,

记作<x,y>,其中x是第一分量,y是第二分量。

相等有序偶:第一分量和第二分量分别相等。

三元有序组:也是一个有序偶,<<x,y>,z> 其中第一分量是一个有序偶。

(注意:<x,<y,y>>不是一个三元有序偶,只能第一分量作为有序偶。)

一般的,n元有序偶的第一分量为n-1元有序偶,第二分量为单独的分量。(举个例子,5元有序偶的第一分量有4个,第二分量只有一个)

2)笛卡尔积/直积

  给定集合A和集合B,若有序偶的第一分量属于集合A,第二份量属于集合B。这样的有序偶的集合叫做集合A和集合B的笛卡尔积或直积、叉积,记作A✖B。

约定:若A是空集,或者B是空集,那么A✖B也是空集。

若A、B是有限集合,则|A×B| = |A| |B|

一般的,笛卡尔积不满足交换律,即A✖B  != B✖A

笛卡尔积运算对集合并运算U和集合交运算n具有分配律。

A✖(B U C) = A ✖B U  A✖C

A的n节笛卡尔积记作A^n,A^n = A ✖ A ✖A ...✖A

一般的,若A1,A2,A3...An都是有限集合,则|A1 ✖ A2 ✖ ...An| = |A1| |A2|... |An|

3)二元关系的基本概念

  定义:任意一个有序偶的集合称为一个二元关系,记作R。如果<x,y>属于R,那么就称x和y有关系R,记作xRy。反之,就是x和y没有关系R。

设X和Y是集合,X✖Y的任意子集R称为X到Y的二元关系。记作R:X->Y。

特别的,当X = Y时,称R为X上的二元关系。

(X✖Y在前面的有序偶我们学习过,就是以X的元素为第一分量,以Y的元素作为第二份量组成的一个有序偶<x,y>的集合,也叫做笛卡尔积。X✖Y的结果是一个二元有序偶的集合)

设R是二元关系,称domR为R的定义域(也就是集合X),称ranR为R的值域(也就是集合Y)。

定义域domR和值域ranR一起称为R的域,记作FLDR。

若|X| =m,|Y| = n,则|X × Y| = mn,X×Y的不同子集共有2^mn个,于是从X到Y的二元关系共有2^mn个。(这里,要怎么理解?要记住,R本质上也是一个关系的集合,也就是X和Y中有关系R的元素的集合,而这个关系R可以是很多种)

注意:设X和Y是集合,则

1)空集是X×Y的子集,称为X到Y的空关系

2)X×Y称X到Y的痊愈关系

3){<x,x> |x属于X}称为X上的恒等关系,记作Ix。

4)二元关系的表示

有限集合的二元关系是一种集合,可以用集合的方法表示。

有三种表示方法:图示法、关系矩阵法、关系图法。

1)图示法

用大圆圈表示集合X和集合Y,放在两边,用小圆圈表示X和Y种所有的元素,旁边写上相应的元素名,有关系就用有方向的弧线连接起来。从第一分量指向第二分量。

2)关系矩阵法

3)关系图法

4.2关系的性质

主要的关系有自反性、反自反性、对称性、反对称性和传递性。

自反:对所有的元素x,都有<x,x>

反自反:多有的有序对不能有任何一个<x,x>

对称:对所有的x和y,只要有<x,y>就有<y,x>

反对称:一个对称都不能有

传递:对所有的<x,y>,必有<y,z>

4.3关系的运算

逆关系:即所有的有序对交换位置:<x,y> 的逆关系就是<y,x>

复合关系:通俗理解来说,一个二元关系R<x,y>和另一个二元关系S<y,z>做复合运算,将二元关系视作为某种运算或者说操作,通过二元关系R是的x得到y,再通过二元关系S是的y得到z。所以,从这个角度来理解,一般计算二元关系都是使用关系矩阵来实现这种从x到y到z的变换,即使R和S的复合计算即两个关系矩阵的相乘的结果。

关系的幂运算:通俗来说,假设有一个二元关系R,对于其关系图来说,一次幂就是点与点之间只走一步,2次幂就是点与点之间走两步,3次幂就是点与点之间走三步,以此类推。

4.4关系的闭包运算

自反闭包的计算:有一个二元关系R,其自反闭包r(R)等于其恒等关系并上R,恒等关系就是R中所有元素的自反,即<x,x>、<y,y>等。

对称闭包的运算:有一个二元关系R,其对称闭包等于R并上其逆关系(<x,y>的逆关系为<y,x>即二元有序对交换位置)。这很好理解,两个关系矩阵做布尔加法即可,对角线的两边对称。

传递闭包的运算:这个比较复杂,一般的计算方法是,R的传递闭包t(R)等于其关系矩阵的1次幂、2次幂....直到n次幂的矩阵做矩阵相加,得到的最终矩阵即传递闭包。

4.5等价关系与等价类

等价关系:自反、对称、传递。

什么叫做等价?若R是等价关系,其有序对<x,y>称为x等价于y。

等价类:是元素的集合,这个集合内的所有元素都是等价的,只要满足这一条件的都叫做等价类。

商集:R是一个等价关系,其所有元素的集合就是商集,记作A/R

4.6相容关系与相容类

相容关系:自反、对称

相容类:有一个定义在A上的相容关系r,对于任何属于A这个集合的任意两个元素有a1 r a2,即使他们之间构成相容关系,那么其就构成一个相容类。和等价类一样,都是元素的集合,而这个集合的元素都满足这个相容关系。

总结来说就是,等价类和相容类都是元素的集合,而这个元素都有等价的关系或者相容的关系。

4.7序关系与哈塞图

偏序关系:自反、反对称、传递

哈塞图:哈塞图是偏序关系的延申,通俗来说,有一个偏序关系r,有<x,y>必有<y,z>,对于构成的<x,z>,中间再没有其他关系例如<y,w><w,z>。

哈塞图:

以上图为例:

极大元:4

极小元:27,12,24

最大元:4

最小元:没有极小元

(注意:不论是最大还是最小元,都必须能和所有的其他元素能对比,即有路径,这很好理解,即既然都不能和所有的元素对比,那么有没有大小之分,而这很明显不符合最大或者最小的要求)
上界:对于一个哈塞图A,求比B的上确界,那么比B的所有元素大的元素的集合就是上界

下界:对于一个哈塞图A,求比B的上确界,那么比B的所有元素小的元素的集合就是下界

上确界:上界的最小值,很好理解,即从这个点开始以上都是上界

下确界:下界的最大值,也很好理解,即从这个点开始以下都是下届

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/337670.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python-面向对象

面向对象 1.初识对象1.1理解使用对象完成数据组织的思路 2.成员方法2.1类的定义和使用语法2.2成员方法的使用 3.类和对象4.构造方法4.1使用构造方法向成员变量赋值 5.其他内置方法5.1__str__字符串方法5.2__lt__小于符号比较方法5.3__le__小于等于比较符号5.4__eq__比较运算符实…

蓝凌EIS智慧协同平台 UniformEntry.aspx sql注入漏洞

漏洞描述&#xff1a; 蓝凌EIS智慧协同平台是一个简单、高效的工作方式专为成长型企业打造的沟通、协同、社交的移动办公平台&#xff0c;覆盖OA、沟通、客户、人事、知识等管理需求&#xff0c;集合了非常丰富的模块&#xff0c;满足组织企业在知识、项目管理系统建设等需求的…

找出字符串中第一个匹配项的下标(Leetcode28)

例题&#xff1a; 分析&#xff1a; 题目的意思就是&#xff1a; 先给出一个字符串pattern&#xff0c;要拿着pattern字符串和原始字符串&#xff08;origin&#xff09;比对&#xff0c;若在origin中找到了pattern字符串&#xff0c;则返回pattern字符串在原始字符串origin中的…

机器学习笔记:时间序列异常检测

1 异常类型 1.1 异常值outlier 给定输入时间序列&#xff0c;异常值是时间戳值其中观测值与该时间序列的期望值不同。 1.2 波动点&#xff08;Change Point&#xff09; 给定输入时间序列&#xff0c;波动点是指在某个时间t&#xff0c;其状态在这个时间序列上表现出与t前后…

buuctf[极客大挑战 2019]BabySQL--联合注入、双写过滤

目录 1、测试万能密码&#xff1a; 2、判断字段个数 3、尝试联合注入 4、尝试双写过滤 5、继续尝试列数 6、查询数据库和版本信息 7、查询表名 8、没有找到和ctf相关的内容&#xff0c;查找其他的数据库 9、查看ctf数据库中的表 10、查询Flag表中的字段名 11、查询表…

RocketMq直接上手(火箭班)

Apache RocketMQ官方文档&#xff1a;https://rocketmq.apache.org/zh/docs/bestPractice/06FAQ/&#xff0c;这里面涵盖了所有的基本知识、各种搭建环境、基础代码测试…还有各种问题总结&#xff0c;很值得自主学习。 1.配置依赖&#xff1a;pom.xml文件 可以只截取maven仓库…

如何轻松拿捏LIO-SAM?

LOAM是目前为止激光里程计(LO)领域最经典最广泛使用的方法&#xff0c;堪称LO领域的baseline&#xff0c;至今仍在KITTI数据集上名列前茅。但是它存在诸多问题&#xff0c;比如&#xff1a;它直接存储全局体素地图而不是局部地图&#xff0c;从而很难执行回环检测以修正漂移&am…

Python(33):数据断言(查询数据库数据和插入数据对比)

Python(33):数据断言(查询数据库数据和插入数据对比) 前言&#xff1a; 需求&#xff1a;需要针对查询数据库数据和插入的数据进行对比&#xff0c;用Python语言进行编写 数据库查询的结果可参考&#xff1a;https://blog.csdn.net/fen_fen/article/details/135462484 1、查…

解决 ubuntu 下编译文件的时候与 YAML 相关的的报错

输入&#xff1a; catkin build -DCMAKE_C_COMPILERgcc-8 -DCMAKE_CXX_COMPILERg-8 或 catkin build airsim_tutorial_pkgs -DCMAKE_C_COMPILERgcc-8 -DCMAKE_CXX_COMPILERg-8 报错如下&#xff1a; 可能是缺少 yaml-cpp 文件&#xff0c;然后操作&#xff1a; sudo apt-g…

Day3Qt

1. &#xff08;1&#xff09;完善对话框&#xff0c;点击登录对话框&#xff0c;如果账号和密码匹配&#xff0c;则弹出信息对话框&#xff0c;给出提示”登录成功“&#xff0c;提供一个Ok按钮&#xff0c;用户点击Ok后&#xff0c;关闭登录界面&#xff0c;跳转到其他界面 …

大语言模型算法工程师面试实战指南

大语言模型算法工程师面试实战指南 一级标题需要算法模拟面试的私信我或者加微信

PyCharm 设置新建Python文件时自动在文章开头添加固定注释的方法

在实际项目开发时&#xff0c;为了让编写的每个代码文件易读、易于维护或方便协同开发时&#xff0c;我们都会在每一个代码文件的开头做一些注释&#xff0c;如作者&#xff0c;文档编写时间&#xff0c;文档的功能说明等。 利用PyCharm 编辑器&#xff0c;我们只需设置相关设…