二叉树及其实现

二叉树

  • 一.树的概念及结构
    • 1.1树的概念
    • 1.2相关概念
  • 2.二叉树的概念及结构
    • 2.1 概念
    • 2.2 特殊的二叉树
  • 3.二叉树的遍历
    • 3.1 前序、中序以及后序遍历
    • 3.2 层序遍历
    • 3.3 判断二叉树是否是完全二叉树
    • 3.4 二叉树的高度
    • 3.5 二叉树的叶子节点个数
    • 3.6 二叉树的第k层的节点个数
    • 3.7 二叉树销毁
    • 3.7 二叉树查找值为x的结点

一.树的概念及结构

1.1树的概念

树是一种非线性的数据结构,它是由(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。

  1. 有一个特殊的结点,称为根结点,根节点没有前驱结点
  2. 除根节点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i<= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继
  3. 因此,树是递归定义的。

在这里插入图片描述

1.2相关概念

在这里插入图片描述

节点的度:一个节点含有的子树的个数称为该节点的度; 如上图:A的为6
叶节点或终端节点:度为0的节点称为叶节点; 如上图:B、C、H、I…等节点为叶节点
非终端节点或分支节点:度不为0的节点; 如上图:D、E、F、G…等节点为分支节点
双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点
孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点
兄弟节点;具有相同父节点的节点互称为兄弟节点 如上图:B、C是兄弟节点
树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为6
节点的层次:从根开始定义起,根为第1层,根的子节点为第2层
树的高度或深度:树中节点的最大层次; 如上图:树的高度为4
堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:H、I互为兄弟节点
节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先
子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙
森林:由m(m>0)棵互不相交的树的集合称为森林;

2.二叉树的概念及结构

2.1 概念

一棵二叉树是结点的一个有限集合,该集合:

  1. 为空
  2. 由一个根节点加上两棵别称为左子树和右子树的二叉树组成

在这里插入图片描述
在这里插入图片描述

  1. 二叉树不存在度大于2的结点
  2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树

2.2 特殊的二叉树

  1. 满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是2^k-1 ,则它就是满二叉树。
  2. 完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。

在这里插入图片描述
在这里插入图片描述

3.二叉树的遍历

3.1 前序、中序以及后序遍历

  1. 前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点的操作发生在遍历其左右子树之前。
  2. 中序遍历(Inorder Traversal)——访问根结点的操作发生在遍历其左右子树之中(间)。
  3. 后序遍历(Postorder Traversal)——访问根结点的操作发生在遍历其左右子树之后。
void PrevOrder(BTNode* root) {//前序if (root == NULL) {printf("NULL ");return;}printf("%d ", root->val);PrevOrder(root->left);PrevOrder(root->right);
}void InOrder(BTNode* root)//中序
{if (root == NULL){printf("NULL ");return;}InOrder(root->left);printf("%d ", root->val);InOrder(root->right);
}void PostOrder(BTNode* root)//后序
{if (root == NULL){printf("NULL ");return;}PostOrder(root->left);PostOrder(root->right);printf("%d ", root->val);
}

3.2 层序遍历

层序遍历:除了先序遍历、中序遍历、后序遍历外,还可以对二叉树进行层序遍历。设二叉树的根节点所在层数为1,层序遍历就是从所在二叉树的根节点出发,首先访问第一层的树根节点,然后从左到右访问第2层上的节点,接着是第三层的节点,以此类推,自上而下,自左至右逐层访问树的结点的过程就是层序遍历。

void LevelOrder(BTNode* root)
{Que q;QueueInit(&q);if (root)QueuePush(&q, root);while (!QueueEmpty(&q)){BTNode* front = QueueFront(&q);printf("%d ", front->val);if (front->left)QueuePush(&q, front->left);if (front->right)QueuePush(&q, front->right);QueuePop(&q);}printf("\n");QueueDestroy(&q);
}

3.3 判断二叉树是否是完全二叉树

int TreeComplete(BTNode* root)
{Que q;QueueInit(&q);if (root)QueuePush(&q, root);while (!QueueEmpty(&q)){BTNode* front = QueueFront(&q);if (front == NULL)break;QueuePush(&q, front->left);QueuePush(&q, front->right);QueuePop(&q);}while (!QueueEmpty(&q)){BTNode* front = QueueFront(&q);QueuePop(&q);if (front != NULL){QueueDestroy(&q);return false;}}QueueDestroy(&q);return true;
}

3.4 二叉树的高度

int TreeHeight(BTNode* root)
{if (root == NULL)return 0;return fmax(TreeHeight(root->left), TreeHeight(root->right)) + 1;
}

3.5 二叉树的叶子节点个数

int TreeLeafSize(BTNode* root)
{if (root == NULL)return 0;if (root->left == NULL && root->right == NULL){return 1;}return TreeLeafSize(root->left) + TreeLeafSize(root->right);
}

3.6 二叉树的第k层的节点个数

int TreeKLevel(BTNode* root, int k)
{assert(k > 0);if (root == NULL)return 0;if (k == 1){return 1;}return TreeKLevel(root->left, k - 1)+ TreeKLevel(root->right, k - 1);
}

3.7 二叉树销毁

void TreeDestroy(BTNode* root)
{if (root == NULL){return;}TreeDestroy(root->left);TreeDestroy(root->right);free(root);//root = NULL;
}

3.7 二叉树查找值为x的结点

BTNode* TreeFind(BTNode* root, int x)
{if (root == NULL)return NULL;if (root->val == x)return root;BTNode* ret = NULL;ret = TreeFind(root->left, x);if (ret)return ret;ret = TreeFind(root->right, x);if (ret)return ret;return NULL;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/338067.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SpringBoot+RocketMQ集群(dledger)部署完整学习笔记

文章目录 前言一、单台集群部署二、多台集群部署1.修改配置2.dashboard修改 三、整合springboot1.引入pom和修改yml2.编写消费者3.编写生产者4.测试效果 总结 前言 RocketMQ集群方式有好几种 官网地址 https://rocketmq.apache.org/zh/docs/4.x/deployment/01deploy 2m-2s-asy…

国产AI工具钉钉AI助理:开启个性化助手服务的新篇章

钉钉AI助理是钉钉平台的一项功能&#xff0c;它可以根据用户的需求提供个性化的AI助手服务。用户可以在AI助理页面一键创建个性化的AI助理&#xff0c;如个人的工作AI助理、旅游AI助理、资讯AI助理等。企业也可以充分使用企业所沉淀的知识库和业务数据&#xff0c;在获得授权后…

C++模板——(4)C++泛型编程与标准模板库简介

归纳编程学习的感悟&#xff0c; 记录奋斗路上的点滴&#xff0c; 希望能帮到一样刻苦的你&#xff01; 如有不足欢迎指正&#xff01; 共同学习交流&#xff01; &#x1f30e;欢迎各位→点赞 &#x1f44d; 收藏⭐ 留言​&#x1f4dd; 勤奋&#xff0c;机会&#xff0c;乐观…

Python基础学习(一)

Python基础语法学习记录 输出 将结果或内容呈现给用户 print("休对故人思故国&#xff0c;且将新火试新茶&#xff0c;诗酒趁年华") # 输出不换行&#xff0c;并且可以指定以什么字符结尾 print("青山依旧在",end ",") print("几度夕阳红…

66.网游逆向分析与插件开发-角色数据的获取-角色类的数据分析与C++还原

内容来源于&#xff1a;易道云信息技术研究院VIP课 ReClass.NET工具下载&#xff0c;它下方链接里的 逆向工具.zip 里的reclass目录下&#xff1a;注意它分x64、x32版本&#xff0c;启动是用管理员权限启动否则附加时有些进程附加不上 链接&#xff1a;https://pan.baidu.com/…

im6ull学习总结(三-4)freetype显示单个字体

矢量字体引入 使用点阵字库显示英文字母、汉字时&#xff0c;大小固定&#xff0c;如果放大缩小则会模糊甚至有锯齿出现&#xff0c;为了解决这个问题&#xff0c;引用矢量字体。 矢量字体形成分三步&#xff1a; 第1步 确定关键点&#xff0c; 第2步 使用数学曲线&#xff08…

使用Windbg动态调试目标进程的一般步骤详解

目录 1、概述 2、将Windbg附加到已经启动起来的目标进程上&#xff0c;或者用Windbg启动目标程序 2.1、将Windbg附加到已经启动起来的目标进程上 2.2、用Windbg启动目标程序 2.3、Windbg关联到目标进程上会中断下来&#xff0c;输入g命令将该中断跳过去 3、分析实例说明 …

了解不同方式导入导出的速度之快

目录 一、用工具导出导入 Navicat&#xff08;速度慢&#xff09; 1.1、导入&#xff1a; 共耗时&#xff1a; 1.2、导出表 共耗时&#xff1a; 二、用命令语句导出导入 2.1、mysqldump速度快 导出表数据和表结构 共耗时&#xff1a; 只导出表结构 导入 共耗时&…

PiflowX-MysqlCdc组件

MysqlCdc组件 组件说明 MySQL CDC连接器允许从MySQL数据库读取快照数据和增量数据。 计算引擎 flink 组件分组 cdc 端口 Inport&#xff1a;默认端口 outport&#xff1a;默认端口 组件属性 名称展示名称默认值允许值是否必填描述例子hostnameHostname“”无是MySQL…

C动态内存分配(被调函数内部指针内存分配)

void *malloc(size_t size); void free(void *); malloc在内存的动态存储区中分配一块长度为size字节的连续存储空间返回该区域的首地址与c中的内存分配new和delete作用相同&#xff08;但c的可适用范围更广&#xff09; 当在栈区&#xff0c;被调函数之外需要使用被调函数内部…

【LeetCode】组合两个表(mysql)

题目 编写解决方案&#xff0c;报告 Person 表中每个人的姓、名、城市和州。如果 personId 的地址不在 Address 表中&#xff0c;则报告为 null 。 以 任意顺序 返回结果表。 结果格式如下所示。 答 select firstName ,lastName,city,state from Person left join Address …

npm ERR! Cannot read properties of null (reading ‘matches‘)

1、npm install body-parser 报错npm ERR! Cannot read properties of null (reading ‘matches’) reply&#xff1a; npm cache clean --force&#xff0c;再重新安装 2、cnpm install --save core-js/modules/es.array.push.js core-js/modules/es.error.cause.js core-js/m…