空间转录组与单细胞转录组联合分析——MIA,代码分享(Nature Biotechnology :)

原文:Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas | Nature Biotechnology

研究者采用 MIA 联合 scRNAseq 和 ST 数据,分析原发性胰腺导管腺癌(PDAC)的组织结构。大家好

MIA 首先使用以下步骤来描述细胞类型特异性基因集和组织区域特异性基因集:

  1. 在 scRNAseq 数据中,识别每个细胞类型中比其余的细胞都高表达的基因,定义细胞类型基因集

  2. 基于 ST 数据,确定各个空间区域相对于其他区域有显著高表达的基因集(空间区域基因集)。

  3. 然后,MIA 计算每一对细胞类型基因集的特异性和区域特异性,并采用超几何分布来评估显著的富集或耗竭

    可以看到MIA需要我们提供 单细胞marker基因集 和 空间marker基因基因集合(最好是同一套样本同时做了空转和单细胞,如果不是同一套,可能对生物学解释有些影响,但是不影响生信分析流程)

完整代码,放在文末,这里分别说下所需要的单细胞和空转输入数据

空转数据输入格式

> ####st-----> cluster_gene_stat=FindAllMarkers(d.all,only.pos = TRUE,logfc.threshold = 0.9)Calculating cluster cluster2  |++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=00s  Calculating cluster cluster4  |++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=01s  Calculating cluster cluster1  |++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=00s  Calculating cluster cluster3  |++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=03s  Calculating cluster cluster5  |++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=00s  Calculating cluster cluster0  |++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=00s  Calculating cluster cluster7Calculating cluster cluster6  |++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=02s  Calculating cluster cluster8  |++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=00s  > head(cluster_gene_stat)               p_val avg_log2FC pct.1 pct.2     p_val_adj  cluster   geneMarco  1.168778e-259  1.9388057 0.874 0.298 2.268598e-255 cluster2  MarcoWfdc21 1.246929e-191  1.5790076 0.836 0.361 2.420289e-187 cluster2 Wfdc21Chil3  2.075188e-149  1.7852619 0.995 0.946 4.027939e-145 cluster2  Chil3Plet1  2.197103e-129  1.2324047 0.870 0.518 4.264576e-125 cluster2  Plet1Ccl6   8.553776e-111  1.2698564 1.000 0.949 1.660288e-106 cluster2   Ccl6Ly6i   9.178082e-100  0.9324478 0.972 0.550  1.781466e-95 cluster2   Ly6i> table(cluster_gene_stat$cluster)cluster2 cluster4 cluster1 cluster3 cluster5 cluster0 cluster7 cluster6 cluster8        7      142       31      247        7       10        0      120        7 > # Initialize a dataframe for us to store values in:> st.clusts=paste0("cluster",seq(0,8,1))> head(cluster_gene_stat)               p_val avg_log2FC pct.1 pct.2     p_val_adj  cluster   geneMarco  1.168778e-259  1.9388057 0.874 0.298 2.268598e-255 cluster2  MarcoWfdc21 1.246929e-191  1.5790076 0.836 0.361 2.420289e-187 cluster2 Wfdc21Chil3  2.075188e-149  1.7852619 0.995 0.946 4.027939e-145 cluster2  Chil3Plet1  2.197103e-129  1.2324047 0.870 0.518 4.264576e-125 cluster2  Plet1Ccl6   8.553776e-111  1.2698564 1.000 0.949 1.660288e-106 cluster2   Ccl6Ly6i   9.178082e-100  0.9324478 0.972 0.550  1.781466e-95 cluster2   Ly6i> st.marker.list=split(cluster_gene_stat,f = cluster_gene_stat$cluster)> st.marker.list = lapply(st.marker.list,rownames)> head(st.marker.list)$cluster2[1] "Marco"  "Wfdc21" "Chil3"  "Plet1"  "Ccl6"   "Ly6i"   "Ctsk"  $cluster4  [1] "Cdhr4"         "Rsph1"         "Gabrp"         "Ccdc153"       "Dnah5"         "Foxj1"         "1110017D15Rik" "Lrrc23"         [9] "Cfap43"        "Cdhr3"         "Dnali1"        "Pifo"          "Scgb1a1"       "Ak7"           "Tmem212"       "Gm19935"       [17] "Cyp2f2"        "Dnah6"         "Cfap65"        "1700007K13Rik" "Fam183b"       "Cyp2s1"        "Cfap206"       "Nme9"          [25] "1700016K19Rik" "Mgst1"         "BC051019"      "AU040972"      "Wfdc2"         "Meig1"         "Fmo3"          "Cfap126"       [33] "Mapk15"        "Tctex1d4"      "Acta2"         "Cckar"         "Drc3"          "Scgb3a2"       "Rbp4"          "Dynlrb2"       [41] "Cldn10"        "B430010I23Rik" "Riiad1"        "3300002A11Rik" "Nme5"          "Ldhb"          "1700024G13Rik" "Hp"            [49] "Cbr2"          "Tspan1"        "Anxa8"         "Odf3b"         "Cnn1"          "Ccdc17"        "Mlf1"          "Dcn"           [57] "Mgat3"         "Cxcl17"        "Slc16a11"      "Gpx2"          "Chad"          "Clic6"         "5330417C22Rik" "Gsta4"         [65] "Retnla"        "Myh11"         "Calml4"        "Cd55"          "Cygb"          "1700094D03Rik" "Cd24a"         "Alas1"         [73] "Actg2"         "Mmp2"          "Lypd2"         "Aldh1a7"       "Myl9"          "Tpm2"          "1700088E04Rik" "Tubb4b"        [81] "Lrrc51"        "Elof1"         "C4b"           "Vpreb3"        "Igfbp5"        "Ccl21a"        "Arhgdig"       "Pon1"          [89] "Igfbp4"        "Csrp2"         "Map1b"         "Chchd10"       "Endog"         "Col14a1"       "Tagln"         "Por"           [97] "Nupr1"         "Dcxr"          "Cyp2a5"        "Pcp4l1"        "Mustn1"        "Net1"          "Traf3ip1"      "Fbln1"        [105] "Aebp1"         "Selenbp1"      "Enah"          "Adamts2"       "Des"           "Pi16"          "Gsto1"         "Ltf"          [113] "Muc5b"         "Actc1"         "Aox3"          "Ces1d"         "Tmem107"       "Bphl"          "Serpinf1"      "C3"           [121] "Tst"           "Tff2"          "Pigr"          "Aldh1a1"       "Scgb1c1"       "Cpe"           "Aldh3b1"       "Tppp3"        [129] "Gstm1"         "Clec3b"        "Scgb3a1"       "Gsta3"         "Bpifa1"        "Bpifb1"        "Igha"          "Reg3g"        [137] "Igfbp6"        "Gsn"           "Jchain"        "Igkc"          "Iglc1"         "Cfd"          $cluster1 [1] "Lcn2"    "Saa3"    "Lrg1"    "Ccl2"    "Sftpd"   "Chil1"   "Slc26a4" "Ctsc"    "Itih4"   "Slpi"    "Il33"    "Fabp5"   "Hc"     [14] "Ly6i1"   "Cd74"    "Clu"     "Fasn"    "Muc1"    "Spp1"    "Igha1"   "Igkc1"   "Ccl7"    "Ctss"    "Wfdc17"  "Jchain1" "Ptgs1"  [27] "Npc2"    "Tgfbi"   "Ighg2c"  "Ighg2b"  "Ighg1"  $cluster3  [1] "Mmp12"    "Clec4n"   "Gpnmb"    "Lgals3"   "Lilr4b"   "Prdx1"    "Lilrb4a"  "Ccl9"     "Psap"     "Clec4d"   "Clec4e"   [12] "Itgb2"    "Il1rn"    "Ftl1"     "Lhfpl2"   "Ltbp2"    "Fth1"     "Ctsb"     "Cstb"     "S100a4"   "Pla2g7"   "Ctss1"    [23] "Spp11"    "Ctsd"     "Capg"     "Atp6v0c"  "Cd68"     "Ctsz"     "Cyba"     "Tyrobp"   "Cd63"     "Litaf"    "Tcirg1"   [34] "Bcl2a1b"  "Cybb"     "Esd"      "AA467197" "Slc7a11"  "Fn1"      "Hvcn1"    "Fcer1g"   "Lpl"      "Cd52"     "Ftl1-ps1" [45] "Lipa"     "Csf2rb"   "Fabp51"   "Fcgr2b"   "Saa31"    "Pld3"     "Fam20c"   "Mpeg1"    "Trem2"    "Col3a1"   "Ccl61"    [56] "Pgam1"    "Tmsb10"   "Acod1"    "Adam8"    "Sirpa"    "Plin2"    "Pkm"      "Col5a2"   "Itgax"    "F10"      "Creg1"    [67] "Slc11a1"  "Arpc1b"   "Sh3bgrl3" "Igf1"     "Grn"      "Eif4a1"   "Slc15a3"  "Ccl3"     "Col1a1"   "Rnf128"   "Lyz2"     [78] "Col1a2"   "Serpine2" "Txn1"     "Wfdc171"  "H2-D1"    "Mmp19"    "Lgmn"     "Eln"      "Sfrp1"    "Ctsa"     "Rnh1"     [89] "Tnfrsf1b" "Tnfaip2"  "Fxyd5"    "Rgs1"     "Pgd"      "Cd53"     "Timp1"    "Ifi30"    "F7"       "Ccl21"    "Ncf2"    [100] "Ninj1"    "Fcgr3"    "Lgals1"   "Vmp1"     "Lcp1"     "Msr1"     "Anxa1"    "Gapdh"    "Gpx1"     "Csf2ra"   "Col5a1"  [111] "Atox1"    "Anpep"    "Prkcd"    "Atp6v1e1" "Col4a1"   "Sulf1"    "Ctsl"     "Hexa"     "Atp6v0d2" "Cd44"     "Rilpl2"  [122] "Gusb"     "Sgk1"     "Plaur"    "Cd741"    "Igfbp7"   "Bhlhe40"  "Csf2rb2"  "Mdk"      "Atp6v0b"  "Cotl1"    "Ptafr"   [133] "Msrb1"    "Mgp"      "Fbn1"     "Spi1"     "Ppic"     "Lat2"     "Plek"     "B4galt5"  "Gpr137b"  "Laptm5"   "Mfap5"   [144] "Itgam"    "Cxcl2"    "Ncf1"     "Cd9"      "Tlr2"     "Txnrd1"   "Acp5"     "Tnc"      "Mmp21"    "Fndc1"    "Junb"    [155] "Psmd8"    "Marcksl1" "Atp6v1b2" "Cd300c2"  "Tuba1c"   "Emp3"     "Cd84"     "Fstl1"    "Pirb"     "Slfn2"    "Card19"  [166] "Slpi1"    "Basp1"    "Aprt"     "Bst2"     "Hmox1"    "Prelid1"  "Bst1"     "Mfsd12"   "Cxcl12"   "Myo1f"    "Sgpl1"   [177] "Rhoc"     "Col4a2"   "Apoe"     "Glipr1"   "Sh3pxd2b" "Sbno2"    "Mif"      "Myo5a"    "Plxnd1"   "Clic1"    "Socs3"   [188] "Alox5ap"  "Ctsk1"    "Lgals3bp" "Ncf4"     "Blvrb"    "Thbs2"    "Cyth4"    "Fmod"     "Cpxm1"    "Srxn1"    "Ms4a6d"  [199] "Pycard"   "Tgfbi1"   "Prdx5"    "Cd14"     "Cxcl10"   "Ctsh"     "Col18a1"  "Ccl71"    "Clu1"     "Cndp2"    "Atp6v1c1"[210] "Eno1"     "Pmepa1"   "Colgalt1" "Cilp"     "Bmp1"     "Unc93b1"  "Col6a3"   "Mt1"      "Sema4d"   "Isg15"    "C1qtnf6" [221] "Aebp11"   "Ccdc80"   "Il1b"     "Npc21"    "Grem1"    "Iigp1"    "Ccl4"     "Nrep"     "S100a8"   "C1qb"     "Man2b1"  [232] "Abca1"    "Igha2"    "Irf7"     "Cxcl9"    "Igkc2"    "Jchain2"  "Slfn4"    "C1qa"     "C1qc"     "Ifit3"    "Rsad2"   [243] "S100a9"   "Ighg2b1"  "Ifit1"    "Ighg2c1"  "Ighg11"  $cluster5[1] "Scgb3a21" "Cyp2f21"  "Inmt"     "Hbb-bs"   "Hba-a2"   "Hba-a1"   "Hbb-bt"  $cluster0 [1] "Inmt1"   "Hba-a11" "Hbb-bs1" "Hbb-bt1" "Hba-a21" "Fmo2"    "Pcolce2" "Cyp4b1"  "Tspan7"  "Hpgd"   

###########################

最终得到空转中的数据,整理出下面两个对象

st.clusts,是一个向量

st.marker.list,是一个列表,元素就是每个区域的marker基因,列表的names就构成了st.lusts

st.clusts[1] "cluster0" "cluster1" "cluster2" "cluster3" "cluster4" "cluster5" "cluster6" "cluster7" "cluster8"> st.marker.list$cluster2[1] "Marco"  "Wfdc21" "Chil3"  "Plet1"  "Ccl6"   "Ly6i"   "Ctsk"  $cluster4  [1] "Cdhr4"         "Rsph1"         "Gabrp"         "Ccdc153"       "Dnah5"         "Foxj1"         "1110017D15Rik" "Lrrc23"         [9] "Cfap43"        "Cdhr3"         "Dnali1"        "Pifo"          "Scgb1a1"       "Ak7"           "Tmem212"       "Gm19935"       [17] "Cyp2f2"        "Dnah6"         "Cfap65"        "1700007K13Rik" "Fam183b"       "Cyp2s1"        "Cfap206"       "Nme9"          [25] "1700016K19Rik" "Mgst1"         "BC051019"      "AU040972"      "Wfdc2"         "Meig1"         "Fmo3"          "Cfap126"       [33] "Mapk15"        "Tctex1d4"      "Acta2"         "Cckar"         "Drc3"          "Scgb3a2"       "Rbp4"          "Dynlrb2"       [41] "Cldn10"        "B430010I23Rik" "Riiad1"        "3300002A11Rik" "Nme5"          "Ldhb"          "1700024G13Rik" "Hp"            [49] "Cbr2"          "Tspan1"        "Anxa8"         "Odf3b"         "Cnn1"          "Ccdc17"        "Mlf1"          "Dcn"           [57] "Mgat3"         "Cxcl17"        "Slc16a11"      "Gpx2"          "Chad"          "Clic6"         "5330417C22Rik" "Gsta4"         [65] "Retnla"        "Myh11"         "Calml4"        "Cd55"          "Cygb"          "1700094D03Rik" "Cd24a"         "Alas1"         [73] "Actg2"         "Mmp2"          "Lypd2"         "Aldh1a7"       "Myl9"          "Tpm2"          "1700088E04Rik" "Tubb4b"        [81] "Lrrc51"        "Elof1"         "C4b"           "Vpreb3"        "Igfbp5"        "Ccl21a"        "Arhgdig"       "Pon1"          [89] "Igfbp4"        "Csrp2"         "Map1b"         "Chchd10"       "Endog"         "Col14a1"       "Tagln"         "Por"           [97] "Nupr1"         "Dcxr"          "Cyp2a5"        "Pcp4l1"        "Mustn1"        "Net1"          "Traf3ip1"      "Fbln1"        [105] "Aebp1"         "Selenbp1"      "Enah"          "Adamts2"       "Des"           "Pi16"          "Gsto1"         "Ltf"          [113] "Muc5b"         "Actc1"         "Aox3"          "Ces1d"         "Tmem107"       "Bphl"          "Serpinf1"      "C3"           [121] "Tst"           "Tff2"          "Pigr"          "Aldh1a1"       "Scgb1c1"       "Cpe"           "Aldh3b1"       "Tppp3"        [129] "Gstm1"         "Clec3b"        "Scgb3a1"       "Gsta3"         "Bpifa1"        "Bpifb1"        "Igha"          "Reg3g"        [137] "Igfbp6"        "Gsn"           "Jchain"        "Igkc"          "Iglc1"         "Cfd"          $cluster1 [1] "Lcn2"    "Saa3"    "Lrg1"    "Ccl2"    "Sftpd"   "Chil1"   "Slc26a4" "Ctsc"    "Itih4"   "Slpi"    "Il33"    "Fabp5"   "Hc"     [14] "Ly6i1"   "Cd74"    "Clu"     "Fasn"    "Muc1"    "Spp1"    "Igha1"   "Igkc1"   "Ccl7"    "Ctss"    "Wfdc17"  "Jchain1" "Ptgs1"  [27] "Npc2"    "Tgfbi"   "Ighg2c"  "Ighg2b"  "Ighg1"  $cluster3  [1] "Mmp12"    "Clec4n"   "Gpnmb"    "Lgals3"   "Lilr4b"   "Prdx1"    "Lilrb4a"  "Ccl9"     "Psap"     "Clec4d"   "Clec4e"   [12] "Itgb2"    "Il1rn"    "Ftl1"     "Lhfpl2"   "Ltbp2"    "Fth1"     "Ctsb"     "Cstb"     "S100a4"   "Pla2g7"   "Ctss1"    [23] "Spp11"    "Ctsd"     "Capg"     "Atp6v0c"  "Cd68"     "Ctsz"     "Cyba"     "Tyrobp"   "Cd63"     "Litaf"    "Tcirg1"   [34] "Bcl2a1b"  "Cybb"     "Esd"      "AA467197" "Slc7a11"  "Fn1"      "Hvcn1"    "Fcer1g"   "Lpl"      "Cd52"     "Ftl1-ps1" [45] "Lipa"     "Csf2rb"   "Fabp51"   "Fcgr2b"   "Saa31"    "Pld3"     "Fam20c"   "Mpeg1"    "Trem2"    "Col3a1"   "Ccl61"    [56] "Pgam1"    "Tmsb10"   "Acod1"    "Adam8"    "Sirpa"    "Plin2"    "Pkm"      "Col5a2"   "Itgax"    "F10"      "Creg1"    [67] "Slc11a1"  "Arpc1b"   "Sh3bgrl3" "Igf1"     "Grn"      "Eif4a1"   "Slc15a3"  "Ccl3"     "Col1a1"   "Rnf128"   "Lyz2"     [78] "Col1a2"   "Serpine2" "Txn1"     "Wfdc171"  "H2-D1"    "Mmp19"    "Lgmn"     "Eln"      "Sfrp1"    "Ctsa"     "Rnh1"     [89] "Tnfrsf1b" "Tnfaip2"  "Fxyd5"    "Rgs1"     "Pgd"      "Cd53"     "Timp1"    "Ifi30"    "F7"       "Ccl21"    "Ncf2"    [100] "Ninj1"    "Fcgr3"    "Lgals1"   "Vmp1"     "Lcp1"     "Msr1"     "Anxa1"    "Gapdh"    "Gpx1"     "Csf2ra"   "Col5a1"  [111] "Atox1"    "Anpep"    "Prkcd"    "Atp6v1e1" "Col4a1"   "Sulf1"    "Ctsl"     "Hexa"     "Atp6v0d2" "Cd44"     "Rilpl2"  [122] "Gusb"     "Sgk1"     "Plaur"    "Cd741"    "Igfbp7"   "Bhlhe40"  "Csf2rb2"  "Mdk"      "Atp6v0b"  "Cotl1"    "Ptafr"   [133] "Msrb1"    "Mgp"      "Fbn1"     "Spi1"     "Ppic"     "Lat2"     "Plek"     "B4galt5"  "Gpr137b"  "Laptm5"   "Mfap5"   [144] "Itgam"    "Cxcl2"    "Ncf1"     "Cd9"      "Tlr2"     "Txnrd1"   "Acp5"     "Tnc"      "Mmp21"    "Fndc1"    "Junb"    [155] "Psmd8"    "Marcksl1" "Atp6v1b2" "Cd300c2"  "Tuba1c"   "Emp3"     "Cd84"     "Fstl1"    "Pirb"     "Slfn2"    "Card19"  [166] "Slpi1"    "Basp1"    "Aprt"     "Bst2"     "Hmox1"    "Prelid1"  "Bst1"     "Mfsd12"   "Cxcl12"   "Myo1f"    "Sgpl1"   [177] "Rhoc"     "Col4a2"   "Apoe"     "Glipr1"   "Sh3pxd2b" "Sbno2"    "Mif"      "Myo5a"    "Plxnd1"   "Clic1"    "Socs3"   [188] "Alox5ap"  "Ctsk1"    "Lgals3bp" "Ncf4"     "Blvrb"    "Thbs2"    "Cyth4"    "Fmod"     "Cpxm1"    "Srxn1"    "Ms4a6d"  [199] "Pycard"   "Tgfbi1"   "Prdx5"    "Cd14"     "Cxcl10"   "Ctsh"     "Col18a1"  "Ccl71"    "Clu1"     "Cndp2"    "Atp6v1c1"[210] "Eno1"     "Pmepa1"   "Colgalt1" "Cilp"     "Bmp1"     "Unc93b1"  "Col6a3"   "Mt1"      "Sema4d"   "Isg15"    "C1qtnf6" [221] "Aebp11"   "Ccdc80"   "Il1b"     "Npc21"    "Grem1"    "Iigp1"    "Ccl4"     "Nrep"     "S100a8"   "C1qb"     "Man2b1"  [232] "Abca1"    "Igha2"    "Irf7"     "Cxcl9"    "Igkc2"    "Jchain2"  "Slfn4"    "C1qa"     "C1qc"     "Ifit3"    "Rsad2"   [243] "S100a9"   "Ighg2b1"  "Ifit1"    "Ighg2c1"  "Ighg11"  $cluster5[1] "Scgb3a21" "Cyp2f21"  "Inmt"     "Hbb-bs"   "Hba-a2"   "Hba-a1"   "Hbb-bt"  $cluster0 [1] "Inmt1"   "Hba-a11" "Hbb-bs1" "Hbb-bt1" "Hba-a21" "Fmo2"    "Pcolce2" "Cyp4b1"  "Tspan7"  "Hpgd"   $cluster7character(0)$cluster6  [1] "Kcnj3"    "Myl1"     "Mybphl"   "Tmem182"  "Trdn"     "Art1"     "Myom2"    "Hamp"     "Tbx20"    "Hrc"      "Fndc5"    [12] "Eef1a2"   "Casq2"    "Sbk3"     "Gm15543"  "Ank1"     "Pgam2"    "Ryr2"     "Smpx"     "Txlnb"    "Srl"      "Myoz2"    [23] "Obscn"    "Ldb3"     "Sln"      "Ttn"      "Smyd1"    "Csrp3"    "Ckmt2"    "Actn2"    "Ckm"      "Cox8b"    "Hspb7"    [34] "Myl7"     "Tcap"     "Myl4"     "Tnnc1"    "Tnni3"    "Cmya5"    "Pln"      "Mb"       "Tnnt2"    "Myh6"     "Cox7a1"   [45] "Cox6a2"   "Fabp3"    "Actc11"   "Atp2a2"   "Ankrd1"   "Tnnt1"    "Myl3"     "Slc2a4"   "Mybpc3"   "Aldh1b1"  "Scara5"   [56] "Nppa"     "Fhl2"     "Coq8a"    "Popdc2"   "Cpe1"     "Myom1"    "mt-Co3"   "Dcn1"     "Tpm1"     "mt-Co2"   "Pi161"    [67] "Eno3"     "Pam"      "Slc25a4"  "Pde4dip"  "mt-Co1"   "mt-Nd1"   "Asb2"     "mt-Nd3"   "Car3"     "mt-Nd4"   "mt-Cytb"  [78] "Got1"     "Pygm"     "Pfkm"     "Ndrg2"    "Cfd1"     "mt-Nd2"   "Igfbp51"  "Hspb6"    "mt-Atp6"  "Cfh"      "Fxyd6"    [89] "Fbln11"   "Tmem38a"  "Clec3b1"  "Gsn1"     "Hadhb"    "Art3"     "Htra3"    "Mdh1"     "Atp5b"    "Atp5g1"   "Lum"     [100] "Aco2"     "Pdlim5"   "Col14a11" "Dsp"      "Mdh2"     "Acsl1"    "Cryab"    "mt-Nd5"   "Fxyd1"    "Idh3a"    "Pdha1"   [111] "Prss23"   "Uqcrfs1"  "Cycs"     "Got2"     "Acadm"    "Mmrn1"    "F13a1"    "Fabp4"    "Ccl8"     "Ccl21a1" $cluster8[1] "Myl71"  "Sln1"   "Myl41"  "Myh61"  "Tnnt21" "Tnni31" "Tcap1" 

单细胞数据输入格式

单细胞中,整理出下面两个对象

sc.clusts,单细胞的每个细胞类型名称,是个向量

cellType_marker,单细胞的marker基因,列表形式,其names就是sc.clusts

> sc.clusts [1] "Inmt fibroblast"      "Hhip fibroblast"      "Universal fibroblast" "Grem1 fibroblast"     "Myofibroblast"        [6] "Monocyte"             "AM3"                  "AM2"                  "NK cell"              "AM1"                 [11] "Dendritic cell"       "Endothelial cell-2"   "Cycling basal cell"   "B cell"               "Neutrophil"          [16] "T cell"               "IM"                   "AT2 cell-2"           "Igha+ AT2  cell"      "Endothelial cell-1"  [21] "AT1 cell"             "Clara cell"           "Ciliated cell"        "AT2 cell-1"           "Ig-producing B cell" > cellType_marker$`Inmt fibroblast`  [1] "Inmt"      "Gpx3"      "Sod3"      "Fmo2"      "Serping1"  "Bgn"       "Mfap4"     "Pcolce2"   "Sparcl1"   "Npnt"      [11] "Ccn1"      "Limch1"    "Fhl1"      "Ogn"       "Ltbp4"     "Clec3b"    "Rbp1"      "Timp3"     "Col1a2"    "Mxra8"     [21] "Mettl7a1"  "Prelp"     "Cxcl14"    "Plpp3"     "Ptgis"     "Plxdc2"    "Cfh"       "Col1a1"    "Col3a1"    "Aldh1a1"   [31] "Tcf21"     "C7"        "Ppp1r14a"  "Rarres2"   "Pdgfra"    "Olfml3"    "Fxyd1"     "Nbl1"      "Cdo1"      "Adh1"      [41] "Mylk"      "Pcolce"    "Sept4"     "Selenbp1"  "Serpinh1"  "Serpine2"  "Spon1"     "Col6a1"    "Hspb1"     "Gpc3"      [51] "Dpt"       "Nfib"      "Cald1"     "Colec12"   "Loxl1"     "Col6a2"    "Cp"        "Itga8"     "C1s1"      "Serpina3n" [61] "Atp1a2"    "Crispld2"  "Dpep1"     "Efemp1"    "Gpm6b"     "Prex2"     "Nr2f2"     "Ces1d"     "Myh10"     "Rcn3"      [71] "Gas6"      "Fbln1"     "Mamdc2"    "Gsta3"     "Mfap5"     "Fkbp9"     "Mmp2"      "Vcam1"     "Col6a3"    "Ms4a4d"    [81] "Abca8a"    "Tnxb"      "C1ra"      "Cryab"     "Slc38a5"   "Nebl"      "Scarf2"    "Vegfd"     "Nox4"      "F2r"       [91] "Sdc2"      "Col13a1"   "Gstt1"     "Palld"     "Ccn5"      "Cpq"       "Tmem204"   "Cdh11"     "Myo1b"     "Ppic"     [101] "Sparc"     "Dbp"       "Gstm2"     "Rnase4"    "Gng11"     "Selenom"   "C4b"       "Mgp"       "Igfbp7"    "Hsd11b1"  [111] "Fermt2"    "Csrp1"     "Slc43a3"   "Nedd4"     "Mfge8"     "Tns1"      "Cd81"      "Tmem176a"  "Nupr1"     "Id3"      [121] "Tmem176b"  "Pmp22"     "Lbh"       "Tpm1"      "Igfbp6"    "Gsn"       "Ecm1"      "Klf9"      "Zbtb20"    "Oat"      [131] "Gyg"       "Dpysl2"    "Timp2"     "Cebpd"     "Macf1"     "Apoe"      "Nenf"      "Sptbn1"    "Tuba1a"    "C3"       [141] "Egr1"      "Aldh2"     "Gstm1"     "Ctsl"      "Jun"      $`Hhip fibroblast` [1] "Hhip"          "Enpp2"         "Aspn"          "Igfbp3"        "Cyp2e1"        "Pcsk5"         "Cdh4"          "Sgcg"          [9] "Mustn1"        "Grem2"         "6330403K07Rik" "Lum"           "Sod3"          "Rarres2"       "Ltbp3"         "Igfbp5"       [17] "Ltbp4"         "Prelp"         "Tnxb"          "Tagln"         "Ddr2"          "Des"           "Fxyd1"         "Gm13889"      [25] "Serpine2"      "Ogn"           "Dpt"           "Auts2"         "Tpm2"          "Lama4"         "Bgn"           "Ptgis"        [33] "Atp1a2"        "Fmo2"          "Sdc2"          "Tgfbr3"        "Col1a1"        "Col6a3"        "Col1a2"        "Mdk"          [41] "Serping1"      "Col3a1"        "Palld"         "Nfib"          "Olfml2b"       "Myl9"          "Mfap5"         "Sparcl1"      [49] "Timp3"         "Igfbp7"        "Crispld2"      "Fstl1"         "Rcn3"          "Pam"           "Prnp"          "Mylk"         [57] "Gpx3"          "Acta2"         "Serpinh1"      "Cavin3"        "Mgp"           "Sparc"         "Cd81"          "P2ry14"       [65] "Dcn"           "Tmem176b"      "Hmcn1"         "Igf1"          "Selenom"       "Adamts10"      "Cald1"         "Zbtb20"       [73] "Nedd4"         "Csrp1"         "Nfia"          "Klf9"          "Gsn"           "Crip2"         "Tmem176a"      "Nfix"         [81] "Tpm1"          "Sdc4"          "Nenf"          "Ctsl"          "Nupr1"         "Lpp"           "Dst"           "Gstm1"        [89] "Id3"           "Laptm4a"       "Apoe"          "Thbs1"         "Cebpd"        $`Universal fibroblast`  [1] "Dcn"       "Clec3b"    "Mgp"       "Serping1"  "Inmt"      "Col1a2"    "Igfbp7"    "Timp3"     "Sparc"     "Igfbp4"    [11] "Col3a1"    "Pcolce2"   "Col1a1"    "Bgn"       "Igfbp6"    "Aebp1"     "Dpt"       "Fbln1"     "Ltbp4"     "Mfap5"     [21] "Cfh"       "Cygb"      "Plpp3"     "Rarres2"   "Serpinf1"  "Gpc3"      "Sparcl1"   "Rbp1"      "Nbl1"      "Sod3"      [31] "C1s1"      "Pcolce"    "Ccn1"      "Ogn"       "Selenom"   "Dpep1"     "Fmo2"      "Serpinh1"  "Adh1"      "Fxyd1"     [41] "C1ra"      "Fstl1"     "Cd34"      "Gpx3"      "Rnase4"    "Rcn3"      "Nfib"      "Plxdc2"    "Mmp2"      "Rbp4"      [51] "Abi3bp"    "C4b"       "Abca8a"    "Col6a2"    "Ptgis"     "Tnxb"      "Akap12"    "Mfap4"     "Fhl1"      "Col14a1"   [61] "Col6a1"    "Gas6"      "Slc43a3"   "Adamts2"   "C7"        "Loxl1"     "Cavin3"    "Gas1"      "Ddr2"      "Efemp1"    [71] "Mxra8"     "Bicc1"     "Ccl11"     "Htra3"     "Gstm2"     "Fbn1"      "Entpd2"    "Pdgfra"    "Mmp23"     "Cxcl12"    [81] "Meg3"      "Cpq"       "Tcf21"     "Prelp"     "Timp1"     "Lhfp"      "Rbms3"     "Scara5"    "Cald1"     "Ccdc80"    [91] "Csrp2"     "Pam"       "Crtap"     "Pmp22"     "Nedd4"     "Ecm1"      "Id3"       "Cd81"      "Nenf"      "Timp2"    [101] "Pi16"      "Nfix"      "Vkorc1"    "Il11ra1"   "Nupr1"     "C3"        "Gsn"       "Pdlim2"    "Zbtb20"    "Cd302"    [111] "Cebpd"     "Serpinb6a" "Tuba1a"    "Klf9"      "Ctsl"      "Mt2"       "Ly6c1"     "Ly6a"      "Sptbn1"    "Gstm1"    [121] "Selenop"   "Jun"       "Laptm4a"   "Egr1"      "Apoe"      "Mt1"      $`Grem1 fibroblast` [1] "Col6a3"   "Mmp2"     "Col6a2"   "Grem1"    "Fbn1"     "Col5a1"   "Tnc"      "Nrep"     "Col6a1"   "Pcolce"   "Col5a2"  [12] "Col1a1"   "Serpine2" "Col1a2"   "Timp1"    "Aebp1"    "Bgn"      "Col3a1"   "Fgfr1"    "Serpinh1" "Rbp1"     "Adh1"    [23] "Nbl1"     "Cald1"    "Gpx3"     "Sod3"     "Mfap4"    "Olfml3"   "Cp"       "Mxra8"    "Serping1" "Dcn"      "Hmcn1"   [34] "Colec12"  "Mylk"     "Sparcl1"  "Sparc"    "Rarres2"  "Mfap5"    "Rcn3"     "Nfib"     "Col4a1"   "Fermt2"   "Ltbp4"   [45] "Ppic"     "Igfbp7"   "Ccn1"     "Fmo2"     "Tpm1"     "Fstl1"    "Timp3"    "Gng11"    "Nedd4"    "Mgp"      "Saa3"    [56] "Mmp14"    "Pmepa1"   "Cfh"      "Igfbp4"   "Nupr1"    "Plpp3"    "Tmem176b" "Pbx1"     "Tmem176a" "Tcf4"     "Inmt"    [67] "Zbtb20"   "Id3"      "Fn1"      "Gsn"     $Myofibroblast  [1] "Tagln"    "Myl9"     "Tpm2"     "Myh11"    "Cald1"    "Mustn1"   "Sod3"     "Ppp1r14a" "Mylk"     "Actc1"    "Des"      [12] "Cnn1"     "Fxyd1"    "Ltbp4"    "Cpe"      "Map1b"    "Lmod1"    "Itih4"    "Eln"      "Serpine2" "Gucy1a1"  "Actg2"    [23] "Itga8"    "Prss23"   "Gucy1b1"  "Postn"    "Smtn"     "Ndrg2"    "Col18a1"  "Synpo2"   "Cdh13"    "Hspg2"    "Lamb2"    [34] "Notch3"   "Pdgfrb"   "Ccn2"     "Cox4i2"   "Npnt"     "Lmcd1"    "Ccl19"    "Sh3bgr"   "Bgn"      "Lhfp"     "Rarres2"  [45] "Tnxb"     "Hspb6"    "Sparcl1"  "Col6a2"   "Nr2f2"    "Gm13889"  "Snhg18"   "Pde5a"    "Aebp1"    "Fhl1"     "Cryab"    [56] "Acta2"    "Tinagl1"  "Col1a2"   "Mxra8"    "Tgfb1i1"  "Cavin3"   "Col3a1"   "Col6a1"   "Timp3"    "Igfbp5"   "Fstl1"    [67] "Ogn"      "Serpinh1" "Selenom"  "Tm4sf1"   "Fermt2"   "Col1a1"   "Rcn3"     "Pls3"     "Sparc"    "Fblim1"   "Tpm1"     [78] "Igfbp7"   "Rbp1"     "Mfge8"    "Hspb1"    "Nedd4"    "Clu"      "Cavin1"   "Pam"      "Ecm1"     "Cnn3"     "Bcam"     [89] "Nfia"     "Itga1"    "Csrp2"    "Col4a1"   "Ppp1r12b" "Ccn1"     "Tns1"     "Ckb"      "Crip2"    "Csrp1"    "Thra"    [100] "Cd81"     "Mgp"      "Klf9"     "Mcam"     "Gpx3"     "Rbpms"    "Id3"      "Lpp"      "Tsc22d1"  "Filip1l"  "Dst"     [111] "Nenf"     "Zbtb20"   "Gsn"      "Epas1"    "Dstn"     "Slc25a4"  "Selenow"  "Actn1"    "Itgb1"    "Gstm1"    "Flna"    $Monocyte [1] "Plac8"  "Ms4a6c" "Ifitm3" "S100a4" "Csf1r"  "Pld4"   "Cybb"   "Ifitm6" "Pou2f2" "Napsa"  "Apoe"   "Ccr2"   "Ace"   $AM3 [1] "Gpnmb"    "Spp1"     "Ccl2"     "Fabp5"    "Inhba"    "Esd"      "Cd63"     "Cd68"     "Ctsb"     "Lgals3"   "Cstb"    [12] "Capg"     "Rnh1"     "Ctss"     "Anxa4"    "Rgcc"     "Vat1"     "Ctsz"     "Emp1"     "Lgmn"     "Grn"      "Ftl1-ps1"[23] "Pgam1"    "Anxa5"    "Ccl7"    $AM2[1] "S100a1"   "Fabp4"    "Atp6v0d2" "Ctsk"     "Fabp5"    "Lpl"      "Mt1"      "Gstm1"    "Chil3"   $`NK cell` [1] "Gzma"      "Ccl5"      "Nkg7"      "AW112010"  "Il2rb"     "Irf8"      "Prf1"      "Klrb1c"    "Gzmb"      "Serpinb9" [11] "Ctsw"      "Ms4a4b"    "Klrd1"     "Klre1"     "Ncr1"      "Klra4"     "Klra8"     "Serpinb6b" "Klrk1"     "Sh2d2a"   [21] "Ptprcap"   "Sytl3"     "Pik3r1"    "Ifngr1"    "Klra7"     "Sept1"     "Klra9"     "Cma1"     $AM1 [1] "Lpl"      "Plet1"    "Chil3"    "Ear2"     "Abcg1"    "Mrc1"     "Ear1"     "Ltc4s"    "Tcf7l2"   "Axl"      "Il18"    [12] "Hebp1"    "Mt1"      "Atp6v0d2" "Sirpa"    "Nceh1"    "Krt19"    "Fabp1"    "Krt79"    "Klhdc4"   "Plin2"    "Lmo4"    [23] "Ptms"     "Aplp2"    "Sgk1"     "Cidec"    "Cd164"    "Dstn"     "Sept9"    "Ctsd"     "S100a1"   "Wfdc21"   "Ptpn12"  $`Dendritic cell`[1] "H2-Aa"  "H2-Eb1" "H2-Ab1" "Cd74"   "Ifi30"  "S100a4" "Cxcl16"$`Endothelial cell-2` [1] "Emp2"     "Igfbp7"   "Ramp2"    "Ly6c1"    "Cldn5"    "Kdr"      "Cdh5"     "Cyp4b1"   "Adgrf5"   "Epas1"    "Tspan7"  [12] "Icam2"    "Calcrl"   "Tmem100"  "Pmp22"    "Kitl"     "Egfl7"    "Bcam"     "Crip2"    "Pcdh1"    "Cavin2"   "Slc9a3r2"[23] "Pecam1"   "Fmo1"     "Acvrl1"   "Slco2a1"  "Sema3f"   "Aqp1"     "Ednrb"    "Tbx3"     "Esam"     "Cd34"     "Fibin"   [34] "Eng"      "Sept4"    "Stmn2"    "Clic5"    "Scn7a"    "Podxl"    "Ecscr"    "Clu"      "Prx"      "Tmem204"  "Tspan18" [45] "Col4a1"   "Plpp1"    "Hspb1"    "Tbx2"     "Clec1a"   "Tmcc2"    "Rgs12"    "Myct1"    "Sema6a"   "Col4a2"   "Itga3"   [56] "Foxf1"    "Myzap"    "Car4"     "Hpgd"     "Cav1"     "Timp3"    "Nhlrc2"   "Nrp1"     "Krt80"    "Cav2"     "Ly6a"    [67] "Ace"      "Bmpr2"    "Thbd"     "Cd36"     "Id3"      "Anxa3"    "Ctla2a"   "Ehd4"     "S1pr1"    "Ptp4a3"   "Selenop" [78] "Sptbn1"   "Tmem176a" "Fkbp1a"   "Tspan13"  "App"      "Clic4"   $`Cycling basal cell`[1] "Pclaf" "Stmn1" "Mki67" "Birc5"$`B cell` [1] "Cd79a"   "Ly6d"    "Ebf1"    "Cd79b"   "H2-Eb1"  "Ighm"    "H2-Aa"   "Igkc"    "H2-DMb2" "H2-Ab1"  "Cd74"    "Fcmr"    "Iglc2"  [14] "Ms4a1"   "H2-Ob"   "Ccr7"    "Ighd"    "Iglc3"   "Mef2c"   "Cd19"    "H2-Oa"   "Cd37"    "Bank1"   "Mzb1"    "Fcrla"   "Scd1"   [27] "Cd55"    "H2-DMa"  "Ets1"   $Neutrophil [1] "S100a9"        "S100a8"        "Retnlg"        "Il1r2"         "Hdc"           "Csf3r"         "G0s2"          "Ifitm1"        [9] "Lmnb1"         "Acod1"         "Il1b"          "Slpi"          "Pglyrp1"       "Trem1"         "Clec4d"        "Mmp9"         [17] "Mxd1"          "C5ar1"         "Cxcr2"         "Grina"         "Lrg1"          "Hp"            "Ifitm2"        "Slc16a3"      [25] "Lcn2"          "Slc7a11"       "Ccrl2"         "H2-Q10"        "Marcksl1"      "Clec4e"        "Cd300ld"       "Cxcl2"        [33] "Lst1"          "Isg15"         "Hcar2"         "Ets2"          "Pla2g7"        "Gadd45b"       "Tnfaip2"       "Msrb1"        [41] "Cd14"          "Stfa2l1"       "Ccr1"          "Srgn"          "Arg2"          "Wfdc17"        "Ptgs2"         "Sorl1"        [49] "Sirpb1b"       "Nfkbiz"        "Slfn1"         "Snx20"         "Alox5ap"       "2310001H17Rik"$`T cell` [1] "Cd3d"   "Cd3e"   "Cd3g"   "Ms4a4b" "Trbc2"  "Lat"    "Il7r"   "Thy1"   "Ets1"   "Gramd3" "Cd28"   "H2-Q7" $IM [1] "C1qb"   "C1qa"   "C1qc"   "Ms4a7"  "Pf4"    "Mafb"   "Trem2"  "Apoe"   "Lgmn"   "Ccl7"   "H2-Eb1" "H2-Ab1" "H2-Aa" $`AT2 cell-2` [1] "Wfdc2"         "Cyp2f2"        "Sftpa1"        "Selenbp1"      "Sftpb"         "Ldhb"          "Aldh1a1"       "Sftpd"         [9] "Gsta4"         "Cxcl15"        "Gsta3"         "Gstm2"         "B430010I23Rik" "Clic3"         "Sec14l3"       "Retnla"       [17] "Cbr2"          "Scgb3a2"       "Dcxr"          "Nupr1"         "Scgb1a1"       "Mgst1"         "Cyb5a"         "Hp"           [25] "Prdx6"        $`Igha+ AT2  cell` [1] "Igkv13-85" "Hbb-bs"    "Ighv1-64"  "Scgb3a1"   "Jchain"    "Hbb-bt"    "Spp1"      "Mgp"       "Sftpc"     "Scgb3a2"  [11] "Igha"      "Scgb1a1"  $`Endothelial cell-1` [1] "Ramp2"    "Epas1"    "Tspan7"   "Ptprb"    "Adgrf5"   "Cdh5"     "Hpgd"     "Egfl7"    "Ly6c1"    "Calcrl"   "Gpihbp1" [12] "Cldn5"    "Plvap"    "Pltp"     "Tmem100"  "Ly6a"     "Cav1"     "Cavin2"   "Tm4sf1"   "Pecam1"   "Eng"      "Slco2a1" [23] "Ctla2a"   "Sema3c"   "Cyyr1"    "Crip2"    "Clec14a"  "Slc9a3r2" "Ace"      "Sptbn1"   "Acvrl1"   "Cd36"     "Ehd4"    [34] "Cd93"     "Aqp1"     "Bmpr2"    "Itga1"    "Id3"      "Sparc"    "Esam"     "BC028528" "Icam2"    "Thbd"     "S100a16" [45] "Col4a1"   "Plpp1"    "Fmo1"     "Cav2"     "Cavin1"   "Cyp4b1"   "Clec1a"   "Tek"      "Adgrl4"   "Scn7a"    "Flt1"    [56] "Podxl"    "Cxcl12"   "Kit"      "Tie1"     "Foxf1"    "Acer2"    "Ece1"     "Ecscr"    "Cd200"    "Gng11"    "Nfib"    [67] "Slc43a3"  "Tjp1"     "Col4a2"   "Heg1"     "Myzap"    "Glp1r"    "Lyve1"    "Itga6"    "Pakap.1"  "Fermt2"   "Rasip1"  [78] "Pcdh17"   "Jup"      "Kdr"      "Arhgef12" "Hmcn1"    "Bmp6"     "Clic5"    "Dlc1"     "Tcf4"     "S1pr1"    "Ccdc85b" [89] "Clec2d"   "Jun"      "Fkbp1a"   "Clic4"    "Tspan13"  "Selenop" $`AT1 cell` [1] "Ager"     "Cldn18"   "Krt7"     "Clic3"    "Myh14"    "Akap5"    "Cyp2b10"  "Rtkn2"    "Mal2"     "Igfbp2"   "Aqp5"    [12] "Lmo7"     "Ndnf"     "Myo1b"    "Tspan8"   "Gprc5a"   "Limch1"   "Cryab"    "Clic5"    "Emp2"     "Sec14l3"  "Bcam"    [23] "Sparc"    "Cystm1"   "Igfbp7"   "Crip2"    "Timp3"    "Mettl7a1" "Hopx"     "Scd2"     "Pmp22"    "Spint2"   "Ndst1"   [34] "Vegfa"   $`Clara cell` [1] "Scgb3a1" "Scgb3a2" "Bpifa1"  "Bpifb1"  "Reg3g"   "Wfdc2"   "Cyp2f2"  "Mgp"     "Scgb1a1" "Cbr2"    "Sftpc"   "Hbb-bs" $`Ciliated cell`[1] "Dynlrb2" "Hbb-bs"  "Hbb-bt"  "Cbr2"   $`AT2 cell-1` [1] "Sftpc"   "Cbr2"    "Sftpa1"  "Wfdc2"   "Sftpb"   "Sftpd"   "Retnla"  "Cyp2f2"  "Scgb3a2" "Scgb1a1" "Chil1"  $`Ig-producing B cell` [1] "Iglv1"     "Mzb1"      "Iglc1"     "Derl3"     "Eaf2"      "Iglc3"     "Jchain"    "Iglc2"     "Igha"      "Igkc"     [11] "Txndc5"    "Cd79a"     "Edem2"     "Tent5c"    "Creld2"    "Prdx4"     "Ly6d"      "Lman1"     "Trp53inp1" "Sdf2l1"   [21] "Pdia4"     "Edem1"     "Fkbp2"     "Xbp1"      "Sec11c"    "Manf"      "Ssr4"      "Hsp90b1"   "Spcs1"     "Igkv1-110"[31] "Ly6a"     

制备好上述数据之后,运行下面代码

N <- length(st.clusts) M <- length(sc.clusts)MIA.results <- matrix(0,nrow = M, ncol = N)row.names(MIA.results) <- sc.clustscolnames(MIA.results) <- st.clustshead(MIA.results)# Gene universegene.universe <- length(rownames(cluster_gene_stat))# Loop over ST clustersfor (i in 1:N) {  # Then loop over SC clusters  # i=1  for (j in 1:M) {    genes1 <- st.marker.list[[st.clusts[i]]]    genes2 <- sc.marker.list[[sc.clusts[j]]]        # Hypergeometric        A <- length(intersect(genes1,genes2))    B <- length(genes1)    C <- length(genes2)    enr <- -log10(phyper(A, B, gene.universe-B, C, lower.tail = FALSE))    dep <- -log10(1-phyper(A, B, gene.universe-B, C, lower.tail = FALSE))    if (enr < dep) {      MIA.results[j,i] = -dep    } else {      MIA.results[j,i] = enr    }  }}# Some results were -Inf...check why this is the case...MIA.results[is.infinite(MIA.results)] <- 0MIA.resultspheatmap::pheatmap(MIA.results,scale ='row' )MIA.results2=MIA.results %>%as.matrix()MIA.results2[ MIA.results >5 ] =5pheatmap::pheatmap(MIA.results2,scale ='row' )# Visualize as heatmaplibrary(reshape2)library(ggplot2)library(dplyr)library(Seurat)heatmap_df <- data.frame('Cell types' = melt(MIA.results)[,1],                         'Tissue regions' = melt(MIA.results)[,2],                         enrichment = melt(MIA.results)[,3])range(heatmap_df$enrichment)head(heatmap_df)boxplot(heatmap_df$enrichment)#根据具体数值,设置最大值和最小值heatmap_df[abs(heatmap_df$enrichment) >7,]$enrichment=7ggplot(data = heatmap_df, aes(x = Tissue.regions, y = Cell.types, fill = enrichment)) +  geom_tile() +   scale_fill_gradient2(low = "navyblue", high = "red", mid = "white",                        midpoint = 0, limit = c(-7,7), space = "Lab",                        name="Enrichment \n -log10(p)") +  ylim(heatmap_df$Cell.types %>% levels() %>% sort() %>% rev())+  theme_minimal()+RotatedAxis() library(reshape2)library(ggplot2)library(dplyr)library(Seurat)library(scales)heatmap_df <- data.frame('Cell types' = melt(MIA.results)[,1],                         'Tissue regions' = melt(MIA.results)[,2],                         enrichment = melt(MIA.results)[,3])head(heatmap_df)ggplot(data = heatmap_df, aes(x = Tissue.regions, y = Cell.types, fill = enrichment)) +  geom_tile() +   scale_fill_gradient2(low = "blue", high = "red",mid = 'white',                        midpoint = 0, limit = c(-1,1), space = "Lab",oob=squish,                       name="Enrichment \n -log10(p)") +  ylim(heatmap_df$Cell.types %>% levels() %>% sort() %>% rev())+  theme_minimal()+RotatedAxis() 

MIA.results,就是最终的结果。但是这里的热图具体怎么画,其实就是各显神通了

  • 最后附上完整版本代码

#request 2.libPaths(c( "/home/data/t040413/R/x86_64-pc-linux-gnu-library/4.2",             "/home/data/t040413/R/yll/usr/local/lib/R/site-library",               "/home/data/refdir/Rlib/", "/usr/local/lib/R/library"))setwd('/home/data/t040413/silicosis/spatial/')library(Seurat)library(dplyr)#d.all=readRDS("~/silicosis/spatial/integrated_slides/integrated_slides.rds")load("/home/data/t040413/silicosis/spatial_transcriptomics/silicosis_ST_harmony_SCT_r0.5.rds")dim(d.all)DefaultAssay(d.all)="Spatial"#visium_slides=SplitObject(object = d.all,split.by = "stim")names(d.all);dim(d.all)d.all@meta.data %>%head()head(colnames(d.all))#给d.all 添加meta信息------adata_obs=read.csv("~/silicosis/spatial/adata_obs.csv")head(adata_obs)mymeta=  paste0(d.all@meta.data$orig.ident,"_",colnames(d.all))  %>% gsub("-.*","",.)  # %>%  head()head(mymeta)tail(mymeta)#掉-及其之后内容adata_obs$col= adata_obs$spot_id %>% gsub("-.*","",.)    # %>%  head()head(adata_obs)rownames(adata_obs)=adata_obs$coladata_obs=adata_obs[mymeta,]head(adata_obs)identical(mymeta,adata_obs$col)d.all=AddMetaData(d.all,metadata = adata_obs)DefaultAssay(d.all)='Spatial'DimPlot(d.all,group.by = 'stim')DimPlot(d.all,label = TRUE)dev.off()####st-----cluster_gene_stat=FindAllMarkers(d.all,only.pos = TRUE,logfc.threshold = 0.5)head(cluster_gene_stat)table(cluster_gene_stat$cluster)# Initialize a dataframe for us to store values in:st.clusts=paste0("cluster",seq(0,8,1))head(cluster_gene_stat)st.marker.list=split(cluster_gene_stat,f = cluster_gene_stat$cluster)st.marker.list = lapply(st.marker.list,rownames)head(st.marker.list)#st.clusts=lapply(st.marker.list,rownames)st.clustsst.marker.list###sc----cellType_gene_stat =readRDS("~/silicosis/spatial2/marker_list_silicosis_nogrem1.rds")head(cellType_gene_stat)table(cellType_gene_stat$cluster)cellType_marker = list()for(i in unique(cellType_gene_stat$cluster)){ #按照标准 获得20个细胞类型的marker基因 列表  cellType_marker[[i]] = cellType_gene_stat[cellType_gene_stat$cluster==i & cellType_gene_stat$p_val_adj<0.1 &cellType_gene_stat$avg_log2FC>0.7, "gene"]}cellType_markerhead(cellType_marker)names(cellType_marker)sc.marker.list=cellType_markersc.clusts=names(cellType_marker)sc.clustscellType_markerst.clustsst.marker.listN <- length(st.clusts) M <- length(sc.clusts)MIA.results <- matrix(0,nrow = M, ncol = N)row.names(MIA.results) <- sc.clustscolnames(MIA.results) <- st.clustshead(MIA.results)# Gene universegene.universe <- length(rownames(cluster_gene_stat))# Loop over ST clustersfor (i in 1:N) {  # Then loop over SC clusters  # i=1  for (j in 1:M) {    genes1 <- st.marker.list[[st.clusts[i]]]    genes2 <- sc.marker.list[[sc.clusts[j]]]        # Hypergeometric        A <- length(intersect(genes1,genes2))    B <- length(genes1)    C <- length(genes2)    enr <- -log10(phyper(A, B, gene.universe-B, C, lower.tail = FALSE))    dep <- -log10(1-phyper(A, B, gene.universe-B, C, lower.tail = FALSE))    if (enr < dep) {      MIA.results[j,i] = -dep    } else {      MIA.results[j,i] = enr    }  }}# Some results were -Inf...check why this is the case...MIA.results[is.infinite(MIA.results)] <- 0MIA.resultspheatmap::pheatmap(MIA.results,scale ='row' )MIA.results2=MIA.results %>%as.matrix()MIA.results2[ MIA.results >5 ] =5pheatmap::pheatmap(MIA.results2,scale ='row' )# Visualize as heatmaplibrary(reshape2)library(ggplot2)library(dplyr)library(Seurat)heatmap_df <- data.frame('Cell types' = melt(MIA.results)[,1],                         'Tissue regions' = melt(MIA.results)[,2],                         enrichment = melt(MIA.results)[,3])range(heatmap_df$enrichment)head(heatmap_df)boxplot(heatmap_df$enrichment)heatmap_df[abs(heatmap_df$enrichment) >7,]$enrichment=7ggplot(data = heatmap_df, aes(x = Tissue.regions, y = Cell.types, fill = enrichment)) +  geom_tile() +   scale_fill_gradient2(low = "navyblue", high = "red", mid = "white",                        midpoint = 0, limit = c(-7,7), space = "Lab",                        name="Enrichment \n -log10(p)") +  ylim(heatmap_df$Cell.types %>% levels() %>% sort() %>% rev())+  theme_minimal()+RotatedAxis() library(reshape2)library(ggplot2)library(dplyr)library(Seurat)library(scales)heatmap_df <- data.frame('Cell types' = melt(MIA.results)[,1],                         'Tissue regions' = melt(MIA.results)[,2],                         enrichment = melt(MIA.results)[,3])head(heatmap_df)ggplot(data = heatmap_df, aes(x = Tissue.regions, y = Cell.types, fill = enrichment)) +  geom_tile() +   scale_fill_gradient2(low = "blue", high = "red",mid = 'white',                        midpoint = 0, limit = c(-1,1), space = "Lab",oob=squish,                       name="Enrichment \n -log10(p)") +  ylim(heatmap_df$Cell.types %>% levels() %>% sort() %>% rev())+  theme_minimal()+RotatedAxis()

------------------------------------------------------------------------

最后,欢迎读者给出建设性意见,如有错误,欢迎批评指正。

                                                                             ——生信小博士

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/338147.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ThreadLocal如何使用详解

ThreadLocal概述&#xff1a; ThreadLocal是Java中的一个线程局部变量工具类&#xff0c;它提供了一种在多线程环境下&#xff0c;每个线程都可以独立访问自己的变量副本的机制。ThreadLocal中存储的数据对于每个线程来说都是独立的&#xff0c;互不干扰。 使用场景&#xff1a…

编译ZLMediaKit(win10+msvc2019_x64)

前言 因工作需要&#xff0c;需要ZLMediaKit&#xff0c;为方便抓包分析&#xff0c;最好在windows系统上测试&#xff0c;但使用自己编译的第三方库一直出问题&#xff0c;无法编译通过。本文档记录下win10上的编译过程&#xff0c;供有需要的小伙伴使用 一、需要安装的软件…

快来预约出行!浙江宁海“网约巴士”走出新思路,跑出市民新满意度

在浙江宁海&#xff0c;一辆辆金旅星辰网约巴士亮眼吸睛&#xff0c;正在成为市民出行的全新方式。 它以灵动、萌态十足的小巴士为载体&#xff0c;依托大数据平台及互联网出行创新理念&#xff0c;将传统公交与动态拼车相结合&#xff0c;从而塑造出更灵活、更便宜、更便捷、更…

单片机原理及应用:中断嵌套

​中断嵌套是指中断系统正在执行一个中断服务时&#xff0c;有另一个优先级更高的中断提出中断请求&#xff0c;这时会暂时终止当前正在执行的级别较低的中断源的服务程序&#xff0c;去处理级别更高的中断源&#xff0c;待处理完毕&#xff0c;再返回到被中断了的中断服务程序…

【EI会议征稿通知】2024年第三届生物医学与智能系统国际学术会议(IC-BIS 2024)

2024年第三届生物医学与智能系统国际学术会议&#xff08;IC-BIS 2024&#xff09; 2024 3rd International Conference on Biomedical and Intelligent Systems (IC-BIS 2024) 2024年第三届生物医学与智能系统国际学术会议&#xff08;IC-BIS 2024&#xff09; 将于2024年4月…

Java项目:115SSM宿舍管理系统

博主主页&#xff1a;Java旅途 简介&#xff1a;分享计算机知识、学习路线、系统源码及教程 文末获取源码 一、项目介绍 宿舍管理系统基于SpringSpringMVCMybatis开发&#xff0c;系统主要功能如下&#xff1a; 学生管理班级管理宿舍管理卫生管理维修登记访客管理 二、技术框…

test fuzz-07-模糊测试 libfuzzer

拓展阅读 开源 Auto generate mock data for java test.(便于 Java 测试自动生成对象信息) 开源 Junit performance rely on junit5 and jdk8.(java 性能测试框架。性能测试。压测。测试报告生成。) test fuzz-01-模糊测试&#xff08;Fuzz Testing&#xff09; test fuzz-…

python 工作目录 与 脚本所在目录不一致

工作目录&#xff1a;执行脚本的地方 我以为工作目录会是当前执行脚本的目录位置&#xff0c;但其实不是&#xff0c;例如&#xff1a; 图中红色文件为我执行的脚本文件&#xff0c;但是实际的工作目录是PYTHON LEARNING 可以用如下代码查询当前工作目录&#xff1a; import os…

Spring MVC 的RequestMapping注解

RequestMapping注解 使用说明 作用&#xff1a;用于建立请求URL和处理请求方法之间的对应关系。 出现位置&#xff1a; 类上&#xff1a; 请求 URL的第一级访问目录。此处不写的话&#xff0c;就相当于应用的根目录。写的话需要以/开头。它出现的目的是为了使我们的 URL 可以…

第86讲:MySQLDump与Binlog日志实现企业级数据备份恢复案例

文章目录 1.企业级数据备份恢复案例描述2.第一环节&#xff1a;周三凌晨进行数据全量备份3.第二环节&#xff1a;模拟周三凌晨备份完之后到下午3点前的业务操作4.第三环节&#xff1a;模拟数据库异常数据丢失导致平台无法使用5.第四环节&#xff1a;发布停服公告全员进入数据恢…

Python(32):字符串转换成列表或元组,列表转换成字典小例子

1、python 两个列表转换成字典 字符串转换成列表 列表转换成字典 column "ID,aes,sm4,sm4_a,email,phone,ssn,military,passport,intelssn,intelpassport,intelmilitary,intelganghui,inteltaitonei,credit_card_short,credit_card_long,job,sm4_cbc,sm4_a_cbc" …

文件夹重命名技巧:如何通过重命名解决文件夹名混乱不规律的问题

在日常生活和工作中&#xff0c;我们经常需要管理大量的文件夹&#xff0c;整理文档、图片等其他类型的文件。随着时间的推移&#xff0c;文件夹名可能会变得混乱和不规律&#xff0c;导致查找和管理变得困难。现在一起来看云炫文件管理器如何让文件名变简洁的操作方法吧。 下…