C++力扣题目110--平衡二叉树

给定一个二叉树,判断它是否是高度平衡的二叉树。

本题中,一棵高度平衡二叉树定义为:

一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1 。

示例 1:

输入:root = [3,9,20,null,null,15,7]
输出:true

示例 2:

输入:root = [1,2,2,3,3,null,null,4,4]
输出:false

示例 3:

输入:root = []
输出:true

题外话

咋眼一看这道题目和104.二叉树的最大深度 (opens new window)很像,其实有很大区别。

这里强调一波概念:

  • 二叉树节点的深度:指从根节点到该节点的最长简单路径边的条数。
  • 二叉树节点的高度:指从该节点到叶子节点的最长简单路径边的条数。

但leetcode中强调的深度和高度很明显是按照节点来计算的,如图:

110.平衡二叉树2

关于根节点的深度究竟是1 还是 0,不同的地方有不一样的标准,leetcode的题目中都是以节点为一度,即根节点深度是1。但维基百科上定义用边为一度,即根节点的深度是0,我们暂时以leetcode为准(毕竟要在这上面刷题)。

因为求深度可以从上到下去查 所以需要前序遍历(中左右),而高度只能从下到上去查,所以只能后序遍历(左右中)

有的同学一定疑惑,为什么104.二叉树的最大深度 (opens new window)中求的是二叉树的最大深度,也用的是后序遍历。

那是因为代码的逻辑其实是求的根节点的高度,而根节点的高度就是这棵树的最大深度,所以才可以使用后序遍历。

在104.二叉树的最大深度 (opens new window)中,如果真正求取二叉树的最大深度,代码应该写成如下:(前序遍历)

class Solution {
public:int result;void getDepth(TreeNode* node, int depth) {result = depth > result ? depth : result; // 中if (node->left == NULL && node->right == NULL) return ;if (node->left) { // 左depth++;    // 深度+1getDepth(node->left, depth);depth--;    // 回溯,深度-1}if (node->right) { // 右depth++;    // 深度+1getDepth(node->right, depth);depth--;    // 回溯,深度-1}return ;}int maxDepth(TreeNode* root) {result = 0;if (root == NULL) return result;getDepth(root, 1);return result;}
};


 

可以看出使用了前序(中左右)的遍历顺序,这才是真正求深度的逻辑!

注意以上代码是为了把细节体现出来,简化一下代码如下:

class Solution {
public:int result;void getDepth(TreeNode* node, int depth) {result = depth > result ? depth : result; // 中if (node->left == NULL && node->right == NULL) return ;if (node->left) { // 左getDepth(node->left, depth + 1);}if (node->right) { // 右getDepth(node->right, depth + 1);}return ;}int maxDepth(TreeNode* root) {result = 0;if (root == 0) return result;getDepth(root, 1);return result;}
};

#本题思路

#递归

此时大家应该明白了既然要求比较高度,必然是要后序遍历。

递归三步曲分析:

  1. 明确递归函数的参数和返回值

参数:当前传入节点。 返回值:以当前传入节点为根节点的树的高度。

那么如何标记左右子树是否差值大于1呢?

如果当前传入节点为根节点的二叉树已经不是二叉平衡树了,还返回高度的话就没有意义了。

所以如果已经不是二叉平衡树了,可以返回-1 来标记已经不符合平衡树的规则了。

代码如下:

// -1 表示已经不是平衡二叉树了,否则返回值是以该节点为根节点树的高度
int getHeight(TreeNode* node)


 

  1. 明确终止条件

递归的过程中依然是遇到空节点了为终止,返回0,表示当前节点为根节点的树高度为0

代码如下:

if (node == NULL) {return 0;
}

  1. 明确单层递归的逻辑

如何判断以当前传入节点为根节点的二叉树是否是平衡二叉树呢?当然是其左子树高度和其右子树高度的差值。

分别求出其左右子树的高度,然后如果差值小于等于1,则返回当前二叉树的高度,否则返回-1,表示已经不是二叉平衡树了。

代码如下:

int leftHeight = getHeight(node->left); // 左
if (leftHeight == -1) return -1;
int rightHeight = getHeight(node->right); // 右
if (rightHeight == -1) return -1;int result;
if (abs(leftHeight - rightHeight) > 1) {  // 中result = -1;
} else {result = 1 + max(leftHeight, rightHeight); // 以当前节点为根节点的树的最大高度
}return result;

代码精简之后如下:

int leftHeight = getHeight(node->left);
if (leftHeight == -1) return -1;
int rightHeight = getHeight(node->right);
if (rightHeight == -1) return -1;
return abs(leftHeight - rightHeight) > 1 ? -1 : 1 + max(leftHeight, rightHeight);

此时递归的函数就已经写出来了,这个递归的函数传入节点指针,返回以该节点为根节点的二叉树的高度,如果不是二叉平衡树,则返回-1。

getHeight整体代码如下:

int getHeight(TreeNode* node) {if (node == NULL) {return 0;}int leftHeight = getHeight(node->left);if (leftHeight == -1) return -1;int rightHeight = getHeight(node->right);if (rightHeight == -1) return -1;return abs(leftHeight - rightHeight) > 1 ? -1 : 1 + max(leftHeight, rightHeight);
}

最后本题整体递归代码如下:

class Solution {
public:// 返回以该节点为根节点的二叉树的高度,如果不是平衡二叉树了则返回-1int getHeight(TreeNode* node) {if (node == NULL) {return 0;}int leftHeight = getHeight(node->left);if (leftHeight == -1) return -1;int rightHeight = getHeight(node->right);if (rightHeight == -1) return -1;return abs(leftHeight - rightHeight) > 1 ? -1 : 1 + max(leftHeight, rightHeight);}bool isBalanced(TreeNode* root) {return getHeight(root) == -1 ? false : true;}
};

#迭代

在104.二叉树的最大深度 (opens new window)中我们可以使用层序遍历来求深度,但是就不能直接用层序遍历来求高度了,这就体现出求高度和求深度的不同。

本题的迭代方式可以先定义一个函数,专门用来求高度。

这个函数通过栈模拟的后序遍历找每一个节点的高度(其实是通过求传入节点为根节点的最大深度来求的高度)

代码如下:

// cur节点的最大深度,就是cur的高度
int getDepth(TreeNode* cur) {stack<TreeNode*> st;if (cur != NULL) st.push(cur);int depth = 0; // 记录深度int result = 0;while (!st.empty()) {TreeNode* node = st.top();if (node != NULL) {st.pop();st.push(node);                          // 中st.push(NULL);depth++;if (node->right) st.push(node->right);  // 右if (node->left) st.push(node->left);    // 左} else {st.pop();node = st.top();st.pop();depth--;}result = result > depth ? result : depth;}return result;
}

然后再用栈来模拟后序遍历,遍历每一个节点的时候,再去判断左右孩子的高度是否符合,代码如下:

bool isBalanced(TreeNode* root) {stack<TreeNode*> st;if (root == NULL) return true;st.push(root);while (!st.empty()) {TreeNode* node = st.top();                       // 中st.pop();if (abs(getDepth(node->left) - getDepth(node->right)) > 1) { // 判断左右孩子高度是否符合return false;}if (node->right) st.push(node->right);           // 右(空节点不入栈)if (node->left) st.push(node->left);             // 左(空节点不入栈)}return true;
}

整体代码如下:

class Solution {
private:int getDepth(TreeNode* cur) {stack<TreeNode*> st;if (cur != NULL) st.push(cur);int depth = 0; // 记录深度int result = 0;while (!st.empty()) {TreeNode* node = st.top();if (node != NULL) {st.pop();st.push(node);                          // 中st.push(NULL);depth++;if (node->right) st.push(node->right);  // 右if (node->left) st.push(node->left);    // 左} else {st.pop();node = st.top();st.pop();depth--;}result = result > depth ? result : depth;}return result;}public:bool isBalanced(TreeNode* root) {stack<TreeNode*> st;if (root == NULL) return true;st.push(root);while (!st.empty()) {TreeNode* node = st.top();                       // 中st.pop();if (abs(getDepth(node->left) - getDepth(node->right)) > 1) {return false;}if (node->right) st.push(node->right);           // 右(空节点不入栈)if (node->left) st.push(node->left);             // 左(空节点不入栈)}return true;}
};

当然此题用迭代法,其实效率很低,因为没有很好的模拟回溯的过程,所以迭代法有很多重复的计算。

虽然理论上所有的递归都可以用迭代来实现,但是有的场景难度可能比较大。

例如:都知道回溯法其实就是递归,但是很少人用迭代的方式去实现回溯算法!

因为对于回溯算法已经是非常复杂的递归了,如果再用迭代的话,就是自己给自己找麻烦,效率也并不一定高。

#总结

通过本题可以了解求二叉树深度 和 二叉树高度的差异,求深度适合用前序遍历,而求高度适合用后序遍历。

本题迭代法其实有点复杂,大家可以有一个思路,也不一定说非要写出来。

但是递归方式是一定要掌握的

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/341294.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

助力智能密集人群检测计数,基于YOLOv8全系列模型【n/s/m/l/x】开发构建通用场景下密集人群检测计数识别系统

在一些人流量比较大的场合&#xff0c;或者是一些特殊时刻、时段、节假日等特殊时期下&#xff0c;密切关注当前系统所承载的人流量是十分必要的&#xff0c;对于超出系统负荷容量的情况做到及时预警对于管理团队来说是保障人员安全的重要手段&#xff0c;本文的主要目的是想要…

横版动作闯关游戏:幽灵之歌 GHOST SONG 中文版

在洛里安荒凉的卫星上&#xff0c;一件长期休眠的死亡服从沉睡中醒来。踏上发现自我、古老谜团和宇宙骇物的氛围2D冒险之旅。探索蜿蜒的洞穴&#xff0c;获得新的能力来揭开这个外星世界埋藏已久的秘密。 游戏特点 发现地下之物 探索这个广阔而美丽如画&#xff0c;充满密室和诡…

数据分析讲课笔记01:数据分析概述

文章目录 零、学习目标一、本次课程概述二、数据分析的背景&#xff08;一&#xff09;进入大数据时代&#xff08;二&#xff09;数据分析的作用 三、什么是数据分析&#xff08;一&#xff09;数据分析的概念&#xff08;二&#xff09;数据分析的分类1、描述性数据分析2、探…

Spark六:Spark 底层执行原理SparkContext、DAG、TaskScheduler

Spark底层执行原理 学习Spark运行流程 学习链接&#xff1a;https://mp.weixin.qq.com/s/caCk3mM5iXy0FaXCLkDwYQ 一、Spark运行流程 流程&#xff1a; SparkContext向管理器注册并向资源管理器申请运行Executor资源管理器分配Executor&#xff0c;然后资源管理器启动Execut…

【MATLAB】 TVFEMD信号分解算法

有意向获取代码&#xff0c;请转文末观看代码获取方式~ 1 基本定义 TVFEMD (Time-Variant Filtered Empirical Mode Decomposition) 是一种信号分解算法&#xff0c;它是基于 EMD (Empirical Mode Decomposition) 方法发展而来的。 EMD是一种自适应的数据分析方法&#xff0…

Vue3 父事件覆盖子事件,Vue2 的 v-on=“$listeners“ 的替代方案

在 Vue3 中&#xff0c;$listeners 被删除 子组件代码&#xff0c;需要特别注意的是事件名为 on 开头&#xff0c;例如 onBack。不确定的可以通过给父组件传递 事件或属性&#xff0c;再打印子组件的 attrs useAttrs()&#xff0c;来确定传值 // template v-bind"newA…

linux centos 修改主机名称

方式一&#xff1a;修改 /etc/hostname文件 直接修改 /etc/hostname 需重启系统。 vi /etc/hostname 方式二:使用命令 hostnamectl set-hostname <hostname> 使用命令:hostnamectl set-hostname xxx&#xff0c;不需要重启。 hostnamectl set-hostname qyhua 执行后…

线索系统性能优化实践

引言 在京东家居事业部&#xff0c;线索CRM系统扮演着至关重要的角色&#xff0c;它作为构建家居场景核心解决方案集的首要环节&#xff0c;肩负着获客和拓展业务的重要使命。然而&#xff0c;随着业务的不断扩张和市场需求的日益增长&#xff0c;系统原有的架构开始显露出诸多…

JS加密/解密之js加密小工具

JS加密的原理和方法 什么是JS加密 JS加密是一种将js代码转换成不易被阅读和修改的形式的技术JS加密的目的是保护js代码的版权&#xff0c;防止被恶意篡改或盗用JS加密的难度和效果取决于加密算法的复杂性和安全性 JS加密的常见方法 压缩和混淆&#xff1a;将js代码的空格&a…

MySQL的事务机制

一、事务机制简述 事务机制,避免写入直接操作数据文件&#xff1b;利用日志来实现间接写入&#xff0c;与事务有关的, redo日志与undo日志&#xff1b;sql语句操作记录复制到undo日志然后增删改查操作的结果会记录在redo日志&#xff0c;如果操作没有什么问题就把数据同步到数…

解决:ModuleNotFoundError: No module named ‘pymysql’

解决&#xff1a;ModuleNotFoundError: No module named ‘pymysql’ 文章目录 解决&#xff1a;ModuleNotFoundError: No module named pymysql背景报错问题报错翻译报错位置代码报错原因解决方法方法一&#xff0c;直接安装方法二&#xff0c;手动下载安装方法三&#xff0c;…

CAN201计网历年大题收集

网络性能计算 e.g1.1 算RTT 传输时间 when you enter the URL in your browser, it initiates an HTTP request. This request is encapsulated in TCP, which is then further encapsulated in IP for routing. The data is transmitted over the physical medium using link …