Halcon实例:提取图像的纹理特征

Halcon实例:提取图像的纹理特征

举例说明,输入的是一幅灰度图像,分别选取其中两个矩形区域的灰度图像,分析其灰度变化。首先选取灰度变化较为明显的矩形1,然后选取灰度变化比较平滑的矩形2,生成灰度共生矩阵,观察二者的参数。
在这里插入图片描述
图(a)为输入图像,红色和黄色的矩形表示分别选择了两块灰度不同的区域;图(b)为红色矩形图像的特征参数;图(c)为黄色矩形图像的特征参数。其具体值如表所示。
在这里插入图片描述
由图和表可见,左边的红色矩形灰度变化明显;能量值比较小,表示纹理的均匀性比较低,变化比较大;对比度比较高,说明灰度的变化比较大,边界比较明显。而右边黄色矩形内的图像的纹理变化不大,灰度相关性高,表示纹理在行或者列方向都非常相似;对比度低,表现了图像的局部灰度变化不明显。实现该过程的代码如下:

dev_close_window ()
*读取输入的图片
read_image (Image, 'data/board')
*将输入的彩色图像转为黑白图像
rgb1_to_gray (Image, GrayImage)
get_image_size (GrayImage, Width, Height)
*创建一个与输入图像同样大小的窗口
dev_open_window (0, 0, Width/4, Height/4, 'black', WindowID)
*设定画笔宽度
dev_set_line_width (5)
*创建两个窗口用于显示参数计算的结果
dev_open_window (0, 512, 320, 320, 'black', WindowID1)
dev_open_window (512, 512, 320, 320, 'black', WindowID2)
*分别设置两个矩阵,选择不同的两部分区域
gen_rectangle1 (Rectangle1, 200,10, 380, 190)
gen_rectangle1 (Rectangle2, 580, 650, 730, 800)
*分别对两个矩形求取灰度共生矩阵Matrix1和Matrix2
gen_cooc_matrix (Rectangle1, GrayImage, Matrix1, 6, 0)
gen_cooc_matrix (Rectangle2, GrayImage, Matrix2, 6, 0)
*分别对Matrix1和Matrix2提取灰度特征参数
cooc_feature_matrix (Matrix1, Energy1, Correlation1, Homogeneity1, Contrast1)
cooc_feature_matrix (Matrix2, Energy2, Correlation2, Homogeneity2, Contrast2)
*采取另一种方式,直接对矩阵2的图像求灰度特征参数,结果与上面两步计算出的参数是一致的
cooc_feature_image (Rectangle2, GrayImage, 6, 0, Energy3, Correlation3, Homogeneity3, Contrast3)
*显示图像窗口和两个矩形的灰度共生矩阵
dev_set_window (WindowID)
dev_set_draw ('margin')
dev_display (GrayImage)
dev_display (Rectangle1)
dev_set_color('yellow')
dev_display (Rectangle2)
dev_set_window (WindowID1)
dev_display (Matrix1)
*以字符串的形式,分别在两个矩阵的对应窗口上显示灰度特征值的计算结果
String := ['Energy: ','Correlation: ','Homogeneity: ','Contrast: ']
dev_set_color('red')
disp_message (WindowID1, String$'-14s' + [Energy1,Correlation1,Homogeneity1,Contrast1]$'6.3f', 'window', 12, 12, 'white', 'false')
dev_set_window (WindowID2)
dev_display (Matrix2)
dev_set_color('yellow')
String := ['Energy: ','Correlation: ','Homogeneity: ','Contrast: ']
disp_message (WindowID2, String$'-14s' + [Energy2,Correlation2,Homogeneity2,Contrast2]$'6.3f', 'window', 12, 12, 'white', 'false')

上述代码使用gen_cooc_matrix算子和coocfeature_matrix算子计算指定区域的灰度共生矩阵,并分别在两个矩阵的对应窗口中显示灰度特征值的计算结果。通过计算图像的纹理特征,可进一步进行模式匹配。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/341405.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【DolphinScheduler】datax读取hive分区表时,空分区、分区无数据任务报错问题解决

问题背景: 最近在使用海豚调度DolphinScheduler的Datax组件时,遇到这么一个问题:之前给客户使用海豚做的离线数仓的分层搭建,一直都运行好好的,过了个元旦,这几天突然在数仓做任务时报错,具体报…

【分布式微服务专题】从单体到分布式(四、SpringCloud整合Sentinel)

目录 前言阅读对象阅读导航前置知识一、什么是服务雪崩1.1 基本介绍1.2 解决方案 二、什么是Sentinel2.1 基本介绍2.2 设计目的2.3 基本概念 三、Sentinel 功能和设计理念3.1 流量控制3.2 熔断降级3.3 系统负载保护 四、Sentinel 是如何工作的 笔记正文一、简单整合Sentinel1.1…

安谋科技“周易”NPU与飞桨完成II级兼容性测试,助力实现多样化AI部署

近日,安谋科技(中国)有限公司(以下简称“安谋科技”)“周易”NPU系列IP与飞桨已完成II级兼容性测试,测试结果显示,双方兼容性表现良好,整体运行稳定。这是安谋科技加入“硬件生态共创…

imgaug库指南(18):从入门到精通的【图像增强】之旅

引言 在深度学习和计算机视觉的世界里,数据是模型训练的基石,其质量与数量直接影响着模型的性能。然而,获取大量高质量的标注数据往往需要耗费大量的时间和资源。正因如此,数据增强技术应运而生,成为了解决这一问题的…

鸿蒙Harmony--状态管理器-@Observed装饰器和@ObjectLink装饰器详解

经历的越多,越喜欢简单的生活,干净的东西,清楚的感觉,有结果的事,和说到做到的人。把圈子变小,把语放缓,把心放宽,用心做好手边的事儿,该有的总会有的! 目录 一&#xff…

SQL-DQL-基础查询

目录 DQL-介绍 DQL-语法 DQL-基本查询 🎉欢迎您来到我的MySQL基础复习专栏 ☆* o(≧▽≦)o *☆哈喽~我是小小恶斯法克🍹 ✨博客主页:小小恶斯法克的博客 🎈该系列文章专栏:重拾MySQL 📜其他专栏&#xff1…

python统计分析——小提琴图(plt.violinplot)

参考资料:用python动手学统计学,帮助文档 使用matplotlib.pyplot.violinplot()函数绘制小提琴图 小提琴图是将数值型数据的核密度图与箱线图融合在一起,具体来说是用核密度估计的结果替换了箱子,而形成的一个形似小提琴的图形。 …

SQL SERVER 19安装 SQL Prompt 10.02版本

SQL Prompt最新版官网下载地址:https://download.red-gate.com/SQLPromptDownload.exe 下载完成后,断开网络,全部点下一步。 注册机会报毒,安装前请先关闭杀毒软件! 下载好附件之后解压,打开SQLPrompt_7…

Qt优秀开源项目之二十一:遇见QSkinny,一个轻量级Qt UI库

目录 一.QSkinny简介 二.工作原理 三.编译 一.QSkinny简介 QSkinny库基于Qt Graphic View和Qt/Quick中少量的核心类。它提供了一组轻量级控件,可以在C或QML中使用这些控件。QSkinny默认是启用硬件加速的,非常适合嵌入式设备,目前已经应用于…

商城小程序(8.购物车页面)

目录 一、商品列表区域1、渲染购物车商品列表的标题区域2、渲染商品列表区域的基本结构3、为my-goods组件封装radio勾选状态4、为my-goods组件封装radio-change事件5、修改购物车中商品的选择状态6、为my-goods组件封装NumberBox7、为my-goods封装num-change事件8、修改购物车商…

基于JavaWeb+BS架构+SpringBoot+Vue电影订票系统系统的设计和实现

基于JavaWebBS架构SpringBootVue电影订票系统系统的设计和实现 文末获取源码Lun文目录前言主要技术系统设计功能截图订阅经典源码专栏Java项目精品实战案例《500套》 源码获取 文末获取源码 Lun文目录 1 绪 论 3 1.1研究背景和意义 3 1.2拟解决的问题及特性 3 1.3论文的结构 …

生物信息学导论-北大-序列比对基础知识

最近重新捡起coursera上的课了,这次准备好好学,把考试考了。。因此顺便记录一下学习过程。 ref: https://www.coursera.org/learn/sheng-wu-xin-xi-xue/home Sequence Alignment 序列比对 生物学问题 biological question: how to determine the simi…