2024美赛数学建模思路 - 复盘:光照强度计算的优化模型

文章目录

  • 0 赛题思路
    • 1 问题要求
    • 2 假设约定
    • 3 符号约定
    • 4 建立模型
    • 5 模型求解
    • 6 实现代码
  • 建模资料

0 赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

1 问题要求

现在已知一个教室长为15米,宽为12米,在距离地面高2.5米的位置均
匀的安放4个光源(分别为1、2、3、4),各个光源的光照强度均为一个单位,如下图
在这里插入图片描述
要求:

  • (1)如何计算教室内任意一点的光照强度?(光源对目标点的光照强度与该光源到目标点距离的平方成反比,与该光源的强度成正比).
  • (2)画出距离地面1米处各个点的光照强度与位置(横纵坐标)之间的函数关系曲面图,试同时给出一个近似的函数关系式.
  • (3)假设离地面1米高正是学生桌面的高度,如何设计这四个点光源的位置,才能使学生对光照的平均满意度达到最高?
  • (4)若将题目中的点光源换成线光源,以上(2)、(3)问的结果又如何?

(对于(1)、(2)问,假设横向(纵向)墙壁与光源、光源与光源、光源与墙壁之间的距离是相等的.)

2 假设约定

  • 1 光不会通过窗、门等外涉,也不考虑光在空气中的消耗,即光照强度和不变;
  • 2 室内不受外界光源影响;
  • 3 教室高度为2.5米;
  • 4 不考虑光的反射;
  • 5 线光源发光是均匀的.

3 符号约定

在这里插入图片描述

4 建立模型

在这里插入图片描述
在这里插入图片描述

5 模型求解

在这里插入图片描述
在这里插入图片描述

6 实现代码

matlab 实现代码
建议最好用python去实现,图会好看一些,而且国内当前趋势会逐渐淘汰matlab,目前有些学校已经无法使用matlab了

clear
clc
max=0;min=4;
for i=0:0.1:3for j=0.1:0.1:4s=0;x1=8+i,y1=5-jx2=8+i,y2=10+jx3=4-i,y3=10+jx4=4-i,y4=5-j     for x=0:0.1:12for y=0:0.1:15for z=0:0.1:2.5if x1~=x & y1~=y & x2~=x & y2~=y & x3~=x & y3~=y & x4~=x & y4~=y s=s+1./((x1-x).^2+(y1-y).^2+(2.5-z).^2)+1./((x2-x).^2+(y2-y).^2+(2.5-z).^2)+1./((x3-x).^2+(y3-y).^2+(2.5-z).^2)+1./((x4-x).^2+(y4-y).^2+(2.5-z).^2);endendendendk=4./s;l=0;z=1;for x=0:0.1:12for y=0:0.1:15l=l+k.*(1./((x1-x).^2+(y1-y).^2+(2.5-z).^2)+1/((x2-x).^2+(y2-y).^2+(2.5-z).^2)+1./((x3-x).^2+(y3-y).^2+(2.5-z).^2)+1./((x4-x).^2+(y4-y).^2+(2.5-z).^2));endendif l>maxmax=l;x11=x1;y11=y1;x12=x2;y12=y2;x13=x3;y13=y3;x14=x4;y14=y4;endp=l./(120.*150);Q=0;for x=0:0.1:12for y=0:0.1:15Q=Q+(k.*(1./((x1-x).^2+(y1-y).^2+(2.5-z).^2)+1./((x2-x).^2+(y2-y).^2+(2.5-z).^2)+1./((x3-x).^2+(y3-y).^2+(2.5-z).^2)+1./((x4-x).^2+(y4-y).^2+(2.5-z).^2))-p).^2.^(1./2);endendif min>Qmin=Q;x21=x1;y21=y1;x22=x2;y22=y2;x23=x3;y23=y3;x24=x4;y24=y4;endend
end
disp(['最大值','x11=',num2str(x11),'  ','y11=',num2str(y11),'  ','x12=',num2str(x12),'  ','y12=',num2str(y12),'  ','x13=',num2str(x13),'  ','y13=',num2str(y13),'  ','x14=',num2str(x14),'  ','y14=',num2str(y14)])
disp(['最平均','x21=',num2str(x21),'  ','y21=',num2str(y21),'  ','x22=',num2str(x22),'  ','y22=',num2str(y22),'  ','x23=',num2str(x23),'  ','y23=',num2str(y23),'  ','x24=',num2str(x24),'  ','y24=',num2str(y24)])
附录二:
clear
clc
max=0;min=4;li=4;
for i=0:0.1:3for j=0.1:0.1:4s=0;x1=8+i,y1=5-jx2=8+i,y2=10+jx3=4-i,y3=10+jx4=4-i,y4=5-j     for x=0:0.1:12for y=0:0.1:15for z=0:0.1:2.5if x1~=x & y1~=y & x2~=x & y2~=y & x3~=x & y3~=y & x4~=x & y4~=y s=s+1./((x1-x).^2+(y1-y).^2+(2.5-z).^2)+1./((x2-x).^2+(y2-y).^2+(2.5-z).^2)+1./((x3-x).^2+(y3-y).^2+(2.5-z).^2)+1./((x4-x).^2+(y4-y).^2+(2.5-z).^2);endendendendk=4./s;l=0;z=1;e=0for x=0:0.1:12for y=0:0.1:15l=l+k.*(1./((x1-x).^2+(y1-y).^2+(2.5-z).^2)+1/((x2-x).^2+(y2-y).^2+(2.5-z).^2)+1./((x3-x).^2+(y3-y).^2+(2.5-z).^2)+1./((x4-x).^2+(y4-y).^2+(2.5-z).^2));r=k.*(1./((x1-x).^2+(y1-y).^2+(2.5-z).^2)+1/((x2-x).^2+(y2-y).^2+(2.5-z).^2)+1./((x3-x).^2+(y3-y).^2+(2.5-z).^2)+1./((x4-x).^2+(y4-y).^2+(2.5-z).^2));e=e+(r-6*10^(-32))^2;endendS=(l-0.1278)^2+eif S<lili=Sx11=x1,y11=y1,  x12=x2,y12=y2,  x13=x3,y13=y3,  x14=x4,y14=y4,en4en4
en4
disp(['x11=',num2str(x11),'  ','y11=',num2str(y11),'  ','x12=',num2str(x12),'  ','y12=',num2str(y12),'  ','x13=',num2str(x13),'  ','y13=',num2str(y13),'  ','x14=',num2str(x14),'  ','y14=',num2str(y14)])
li

建模资料

资料分享: 最强建模资料
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/341634.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2024年1月11日 主题:非枪人生

2024年1月11日15:58:29 2024年1月11日15:35:13 2024年1月11日15:57:51 对物理进行大致预 2024年1月11日20:27:14 结论&#xff1a;不适合进行数据结构的训练和对电路的模拟感受 2024年1月11日20:28:32 今天也平静的结束了 不需要键盘的支持也就这么结束了我也不知道…

怎么处理网站的一些安全风险

随时互联网的持续发展&#xff0c;数字化转型步伐不断加快&#xff0c;社会各行业都走进了信息化、数字化。但与此同时&#xff0c;网络发展带来了许多风险&#xff0c;各行业面临着日益复杂的数据安全和网络安全威胁。其中&#xff0c;网站的安全风险持续增长&#xff0c;是各…

C++ Primer 6.2参数传递 知识点+练习题

C Primer 6.2参数传递 知识点练习题 指针形参使用引用拷贝Const 形参实参尽量使用常量引用数组形参数组引用形参传递多维数组向main函数传参数含有可变形参的函数练习题待更新 指针形参 void reset(int *p) {*p0;//p指向的整型对象变为0p0;//只是对形参改变p&#xff0c;使其为…

详解如何撰写一个基础的技术交底书

大家好,我是英子老师。作为一名知识产权专家,深耕于专利行业十余年,具有丰富的专利工作经验:曾在大型专利代理机构从事专利代理工作、专利质检工作(抽查代理机构的专利代理人的撰写质量并评分);之后在知名上市企业、行业龙头企业担任高级专利工程师的职位,主要工作内容…

Linux ----冯诺依曼体系结构与操作系统

目录 前言 一、冯诺依曼体系结构 二、为什么选择冯诺依曼体系结构&#xff1f; 三、使用冯诺依曼结构解释问题 问题1&#xff1a; 问题2: 四、操作系统 1.操作系统是什么 2.为什么需要操作系统 3.操作系统怎样管理的 4.如何给用户提供良好环境 五、我们是怎样调用系…

2023年全国职业院校技能大赛软件测试赛题—单元测试卷④

任务二 单元测试 一、任务要求 题目1&#xff1a;根据下列流程图编写程序实现相应分析处理并显示结果。返回结果“ax&#xff1a;”&#xff08;x为2、3或4&#xff09;&#xff1b;其中变量x、y均须为整型。编写程序代码&#xff0c;使用JUnit框架编写测试类对编写的程序代码…

第19课 在Android环境中使用FFmpeg和openCV进行开发的一般步骤

在上节课&#xff0c;根据模板文件我们对在Android环境中使用FFmpeg和openCV进行开发有了一个初步的体验&#xff0c;这节课&#xff0c;我们来具体看一下其工作流程。 1.程序的入口 与VS2013程序开发类似&#xff0c;Android程序开发也有一个入口&#xff0c;在这个模板中&a…

图像识别与计算机视觉有什么区别?

图像识别和计算机视觉在很多方面存在差异&#xff0c;这些差异主要体现在以下几个方面&#xff1a; 1. 研究范围 图像识别是计算机视觉领域的一个子集。计算机视觉不仅包括图像识别&#xff0c;还涵盖了更广泛的内容&#xff0c;如场景理解、目标跟踪、分割、识别和解释等。简而…

SQL-分组查询

目录 DQL-分组查询 分组查询注意事项&#xff1a; DQL- 排序查询 &#x1f389;欢迎您来到我的MySQL基础复习专栏 ☆* o(≧▽≦)o *☆哈喽~我是小小恶斯法克&#x1f379; ✨博客主页&#xff1a;小小恶斯法克的博客 &#x1f388;该系列文章专栏&#xff1a;重拾MySQL &…

Mysql——索引相关的数据结构

索引 引入 我们知道&#xff0c;数据库查询是数据库的最主要功能之一。我们都希望查询数据的速度能尽可能的快&#xff0c;因此数据库系统的设计者会从查询算法的角度进行优化。最基本的查询算法当然是顺序查找&#xff08;linear search&#xff09;&#xff0c;这种复杂度为…

探索 TCP 与 UDP:网络通信的两门学派(上)

&#x1f90d; 前端开发工程师&#xff08;主业&#xff09;、技术博主&#xff08;副业&#xff09;、已过CET6 &#x1f368; 阿珊和她的猫_CSDN个人主页 &#x1f560; 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 &#x1f35a; 蓝桥云课签约作者、已在蓝桥云…

基于SSM的教室信息管理系统设计与实现

末尾获取源码 开发语言&#xff1a;Java Java开发工具&#xff1a;JDK1.8 后端框架&#xff1a;SSM 前端&#xff1a;Vue 数据库&#xff1a;MySQL5.7和Navicat管理工具结合 服务器&#xff1a;Tomcat8.5 开发软件&#xff1a;IDEA / Eclipse 是否Maven项目&#xff1a;是 目录…