了解PyTorch中的缩放点积注意力及演示

torch.nn.functional.scaled_dot_product_attention 函数在 PyTorch 框架中用于实现缩放点积注意力(Scaled Dot-Product Attention)。这是一种在自然语言处理和计算机视觉等领域常用的注意力机制。它的主要目的是通过计算查询(query)、键(key)和值(value)之间的关系,来决定我们应该在输入的哪些部分上聚焦。

函数用法和用途:

此函数通过对查询(query)、键(key)和值(value)张量进行操作,计算得到注意力机制的输出。它主要用于序列模型中,如Transformer结构,帮助模型更有效地捕捉序列中的重要信息。

参数说明:

  • query:查询张量,形状为(N, ..., L, E),其中N是批大小,L是目标序列长度,E是嵌入维度。
  • key:键张量,形状为(N, ..., S, E),S是源序列长度。
  • value:值张量,形状为(N, ..., S, Ev),Ev是值的嵌入维度。
  • attn_mask:可选的注意力掩码张量,形状为(N, ..., L, S)
  • dropout_p:丢弃概率,用于应用dropout。
  • is_causal:如果为真,假设因果注意力掩码。
  • scale:缩放因子,在softmax之前应用。

注意事项:

  • 此函数是beta版本,可能会更改。
  • 根据不同的后端(如CUDA),函数可能调用优化的内核以提高性能。
  • 如果需要更高的精度,可以使用支持torch.float64的C++实现。

数学原理:

缩放点积注意力的核心是根据查询和键之间的点积来计算注意力权重,然后将这些权重应用于值。公式通常如下所示:

Attenton(Q,K,V)=softmax(\frac{QK^{T}}{\sqrt{d_{k}}})V

其中Q、K和V 分别是查询、键和值矩阵,d_{k} 是键向量的维度。

示例代码:

import torch
import torch.nn.functional as F# 定义查询、键和值张量
query = torch.rand(32, 8, 128, 64, dtype=torch.float16, device="cuda")
key = torch.rand(32, 8, 128, 64, dtype=torch.float16, device="cuda")
value = torch.rand(32, 8, 128, 64, dtype=torch.float16, device="cuda")# 使用上下文管理器确保运行一个融合内核
with torch.backends.cuda.sdp_kernel(enable_math=False):output = F.scaled_dot_product_attention(query, key, value)

这段代码首先定义了查询、键和值张量,然后使用torch.backends.cuda.sdp_kernel上下文管理器来确保使用一个融合内核,最后调用scaled_dot_product_attention函数计算注意力输出。 

总结

torch.nn.functional.scaled_dot_product_attention 是一个强大的PyTorch函数,用于实现缩放点积注意力机制。它通过计算查询、键和值之间的关系,为深度学习模型提供了一种有效的方式来捕获和关注重要信息。适用于各种序列处理任务,此函数特别适合于复杂的自然语言处理和计算机视觉应用。其高效的实现和可选的优化内核使其在处理大规模数据时表现卓越。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/342194.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java-网络爬虫(三)

文章目录 前言一、爬虫的分类二、跳转页面的爬取三、网页去重四、综合案例1. 案例三 上篇:Java-网络爬虫(二) 前言 上篇文章介绍了 webMagic,通过一个简单的入门案例,对 webMagic 的核心对象和四大组件都做了简要的说明,以下内容…

数据聚合、自动补全、数据同步、es集群

目录 数据聚合 聚合的分类 DSL实现bucket聚合 DSL实现Metrics聚合 RestAPI实现聚合 多条件聚合 带过滤条件的聚合 自动补全 安装拼音分词器 自定义分词器 completion suggester查询 修改索引库数据结构 RestAPI实现自动补全查询 实现搜索框自动补全 数据同步 数…

数据库读写分离设计方案

一、什么是读写分离 数据库读写分离是一种架构模式,其中数据库系统被配置为将读操作(查询)和写操作(插入、更新、删除)分别路由到不同的数据库实例或节点。读操作通常由从节点(或只读节点)处理&…

自动化测试框架pytest系列之21个命令行参数介绍(二)

第一篇 : 自动化测试框架pytest系列之基础概念介绍(一)-CSDN博客 接上文 3.pytest功能介绍 3.1 第一条测试用例 首先 ,你需要编写一个登录函数,主要是作为被测功能,同时编写一个测试脚本 ,进行测试登录功能 。 登…

视频转为序列图的软件,让视频批量转为序列图

你是否曾经遇到过这样的困境:需要将一段视频转为一系列的图片,但却没有合适的工具来完成?或许你曾经手动截图,或者用其他方式,但结果往往不尽如人意,图片质量差、色彩失真、画面不清晰。现在,让…

建议收藏!2023首获中科院分区期刊目录

2023年12月27日,中科院分区正式发布《2023年中国科学院文献情报中心期刊分区表》。今年期刊分区表包括SCIE、SSCI、A&HCI,以及ESCI中国期刊,共设置了包括自然科学、人文科学和社会科学在内的21个大类。 相比之前,中科院分区今…

CAN总线记录仪给出口车辆的应用

CAN总线记录仪给出口车辆的应用 CAN总线记录仪在出口车辆中的应用十分广泛,主要体现在故障排查、数据分析、质量保证和驾驶行为分析等方面。 1.故障排查:CAN总线记录仪可以记录车辆在运行过程中的所有CAN总线数据,包括发动机、刹车系统、转…

【AI大模型应用开发】1.0 Prompt Engineering(提示词工程)- 典型构成、原则与技巧,代码中加入Prompt

从这篇文章开始,我们就正式开始学习AI大模型应用开发的相关知识了。首先是提示词工程(Prompt Engineering)。 文章目录 0. 什么是提示词(Prompt)1. 为什么Prompt会起作用 - 大模型工作原理2. Prompt的典型构成、原则与…

聚会喝酒摇色子活跃气氛神器小程序源码系统 附带完整的搭建教程

在中国的传统聚会文化中,喝酒摇色子是一种非常受欢迎的游戏方式。它能迅速拉近人与人之间的距离,使气氛更加活跃。然而,传统的摇色子方式存在很多不便,如需要手动计数、无法记录历史数据等。因此,开发一款聚会喝酒摇色…

mp4文件全部转换为mp3

问题 今天突发奇想,想把mp4视频转换为mp3来收听,于是想到了ffmpeg工具 步骤 安装ffmpeg环境 要在 Windows 上配置 FFmpeg 环境,你可以按照以下步骤进行操作: 下载 FFmpeg: 首先,你需要下载 FFmpeg 的 W…

spaceship

通过数字平台启动您的网站、想法和未来,该平台旨在提供和连接您所需的域、托管、电子邮件和 Web 工具,并让您完全掌控 如果需要购买可以开5347的卡,点击获取

【AI视野·今日NLP 自然语言处理论文速览 第七十四期】Wed, 10 Jan 2024

AI视野今日CS.NLP 自然语言处理论文速览 Wed, 10 Jan 2024 Totally 38 papers 👉上期速览✈更多精彩请移步主页 Daily Computation and Language Papers Model Editing Can Hurt General Abilities of Large Language Models Authors Jia Chen Gu, Hao Xiang Xu, J…