【python,机器学习,nlp】RNN循环神经网络

RNN(Recurrent Neural Network),中文称作循环神经网络,它一般以序列数据为输入,通过网络内部的结构设计有效捕捉序列之间的关系特征,一般也是以序列形式进行输出。

因为RNN结构能够很好利用序列之间的关系,因此针对自然界具有连续性的输入序列,如人类的语言,语音等进行很好的处理,广泛应用于NLP领域的各项任务,如文本分类,情感分析,意图识别,机器翻译等.

RNN模型的分类:

这里我们将从两个角度对RNN模型进行分类.第一个角度是输入和输出的结构,第二个角度是RNN的内部构造.

按照输入和输出的结构进行分类:

N vs N-RNN

它是RNN最基础的结构形式,最大的特点就是:输入和输出序列是等长的.由于这个限制的存在,使其适用范围比较小,可用于生成等长度的合辙诗句.

N vs 1-RNN

有时候我们要处理的问题输入是一个序列,而要求输出是一个单独的值而不是序列,要在最后一个隐层输出h上进行线性变换。

大部分情况下,为了更好的明确结果,还要使用sigmoid或者softmax进行处理.这种结构经常被应用在文本分类问题上.

1 vs N-RNN

我们最常采用的一种方式就是使该输入作用于每次的输出之上.这种结构可用于将图片生成文字任务等.

N vs M-RNN

这是一种不限输入输出长度的RNN结构,它由编码器和解码器两部分组成,两者的内部结构都是某类RNN,它也被称为seq2seq架构。

输入数据首先通过编码器,最终输出一个隐含变量c,之后最常用的做法是使用这个隐含变量c作用在解码器进行解码的每一步上,以保证输入信息被有效利用。

按照RNN的内部构造进行分类:

传统RNN

内部计算函数

tanh的作用: 用于帮助调节流经网络的值,tanh函数将值压缩在﹣1和1之间。

传统RNN的优势:
由于内部结构简单,对计算资源要求低,相比之后我们要学习的RNN变体:LSTM和GRU模型参数总量少了很多,在短序列任务上性能和效果都表现优异。

传统rnn的缺点:
传统RNN在解决长序列之间的关联时,通过实践,证明经典RNN表现很差,原因是在进行反向传播的时候,过长的序列导致梯度的计算异常,发生梯度消失或爆炸。

LSTM

LSTM (Long Short-Term Memory)也称长短时记忆结构,它是传统RNN的变体,与经典RNN相比能够有效捕捉长序列之间的语义关联,缓解梯度消失或爆炸现象,同时LSTM的结构更复杂。

LSTM缺点:由于内部结构相对较复杂,因此训练效率在同等算力下较传统RNN低很多.

LSTM优势:LSTM的门结构能够有效减缓长序列问题中可能出现的梯度消失或爆炸,虽然并不能杜绝这种现象,但在更长的序列问题上表现优于传统RNN.

 

它的核心结构可以分为四个部分去解析:

遗忘门

与传统RNN的内部结构计算非常相似,首先将当前时间步输入x(t)与上一个时间步隐含状态h(t-1)拼接, 得到[x(t), h(t-1)],然后通过一个全连接层做变换,最后通过sigmoid函数(变化到【0,1】)进行激活得到f(t),我们可以将f(t)看作是门值,好比一扇门开合的大小程度,门值都将作用在通过该扇门的张量,遗忘门门值将作用的上一层的细胞状态上,代表遗忘过去的多少信息,又因为遗忘门门值是由x(t), h(t-1)计算得来的,因此整个公式意味着根据当前时间步输入和上一个时间步隐含状态h(t-1)来决定遗忘多少上一层的细胞状态所携带的过往信息.

输入门

输入门的计算公式有两个,第一个就是产生输入门门值的公式,它和遗忘门公式几乎相同,区别只是在于它们之后要作用的目标上,这个公式意味着输入信息有多少需要进行过滤.输入门的第二个公式是与传统RNN的内部结构计算相同.对于LSTM来讲,它得到的是当前的细胞状态,而不是像经典RNN一样得到的是隐含状态.

细胞状态

我们看到输入门的计算公式有两个,第一个就是产生输入门门值的公式,它和遗忘门公式几乎相同,区别只是在于它们之后要作用的目标上.这个公式意味着输入信息有多少需要进行过滤.输入门的第二个公式是与传统RNN的内部结构计算相同.对于LSTM来讲,它得到的是当前的细胞状态,而不是像经典RNN一样得到的是隐含状态。

输出门

输出门部分的公式也是两个,第一个即是计算输出门的门值,它和遗忘门,输入门计算方式相同.第二个即是使用这个门值产生隐含状态h(t),他将作用在更新后的细胞状态C(t)上,并做tanh激活,最终得到h(t)作为下一时间步输入的一部分.整个输出门的程,就是为了产生隐含状态h(t)。

Bi-LSTM

Bi-LSTM即双向LSTM,它没有改变LSTM本身任何的内部结构,只是将LSTM应用两次且方向不同,再将两次得到的LSTM结果进行拼接作为最终输出

GRU

GRU(Gated Recurrent Unit)也称门控循环单元结构,它也是传统RNN的变体,同LSTM一样能够有效捕捉长序列之间的语义关联,缓解梯度消失或爆炸现象.同时它的结构和计算要比LSTM 更简单。

GRU的优势:GRU和LSTM作用相同,在捕捉长序列语义关联时,能有效抑制梯度消失或爆炸,效果都优于传统rnn且计算复杂度相比lstm要小.

GRU的缺点:GRU仍然不能完全解决梯度消失问题,同时其作用RNN的变体,有着RNN结构本身的一大弊端,即不可并行计算,这在数据量和模型体量逐步增大的未来,是RNN发展的关键瓶颈

它的核心结构可以分为两个部分去解析:

更新门 
重置门

Bi-GRU

Bi-GRU与Bi-LSTM的逻辑相同,都是不改变其内部结构,而是将模型应用两次且方向不同,再将两次得到的LSTM结果进行拼接作为最终输出.具体参见上小节中的Bi-LSTM。

注意力机制

注意力机制是注意力计算规则能够应用的深度学习网络的载体,同时包括一些必要的全连接层以及相关张量处理,使其与应用网络融为一体.使自注意力计算规则的注意力机制称为自注意力机制.

注意力计算规则

它需要三个指定的输入Q(query), K(key), V(value), 然后通过计算公式得到注意力的结果,这个结果代表query在key和value作用下的注意力表示.当输入的Q=K=V时,称作自注意力计算规则.

注意力机制的作用

在解码器端的注意力机制: 能够根据模型目标有效的聚焦编码器的输出结果,当其作为解码器的输入时提升效果,改善以往编码器输出是单一定长张量,无法存储过多信息的情况.

在编码器端的注意力机制:主要解决表征问题,相当于特征提取过程,得到输入的注意力表示.一般使用自注意力(self-attention).

注意力机制实现步骤

第一步:根据注意力计算规则,对Q,K,V进行相应的计算.

第二步:根据第一步采用的计算方法,如果是拼接方法,则需要将Q与第二步的计算结果再进行拼接,如果是转置点积,一般是自注意力,Q与V相同,则不需要进行与Q的拼接.

第三步:最后为了使整个attention机制按照指定尺寸输出,使用线性层作用在第二步的结果上做一个线性变换,得到最终对Q的注意力表示.

代码实现

传统模型

import torch
import torch.nn as nn"""
nn.RNN类初始化主要参数解释
input_size:输入张量x中特征维度的大小
hidden_size:隐层张量h中特征维度的大小
num_layers: 隐含层的数量.
nonlinearity: 激活函数的选择,默认是tanh.
"""
rnn=nn.RNN(input_size=5,hidden_size=6,num_layers=1)"""
设定输入的张量x
第一个参数:sequence_length(输入序列的长度)
第二个参数:batch_size(批次的样本数)
第三个参数:input_size(输入张量x的维度)
"""
input=torch.randn(1,3,5)
"""
设定初始化的h0
第一个参数:num_layers *num_directions(层数*网络方向数)
第二个参数:batch_size(批次的样本数)
第三个参数:hiddeh_size(隐藏层的维度)
"""
h0=torch.randn(1,3,6)"""
nn.RNN类实例化对象主要参数解释
input: 输入张量x
h0:初始化的隐层张量h
"""
output,hn=rnn(input,h0)

LSTM模型

import torch
import torch.nn as nn"""
nn.LSTM类初始化主要参数解释:
input_size: 输入张量x中特征维度的大小.
hidden_size: 隐层张量h中特征维度的大小.
num_layers: 隐含层的数量.
bidirectional: 是否选择使用双向LSTM,如果为True,则使用;默认不使用.
"""
rnn=nn.LSTM(input_size=5,hidden_size=6,num_layers=2)"""
设定输入的张量x
第一个参数:sequence_length(输入序列的长度)
第二个参数:batch_size(批次的样本数)
第三个参数:input_size(输入张量x的维度)
"""
input=torch.randn(1,3,5)
"""
设定初始化的h0,c0
第一个参数:num_layers *num_directions(层数*网络方向数)
第二个参数:batch_size(批次的样本数)
第三个参数:hiddeh_size(隐藏层的维度)
"""
h0=torch.randn(2,3,6)
c0=torch.randn(2,3,6)"""
nn.LSTM类实例化对象主要参数解释
input: 输入张量x
h0:初始化的隐层张量h.
cO:初始化的细胞状态张量c.
"""
output,(hn,cn)=rnn(input,(h0,c0))

GRU模型

import torch
import torch.nn as nn"""
nn.GRU类初始化主要参数解释
Input_size: 输入张量x中特征维度的大小
hidden_size:隐层张量h中特征维度的大小
num_layers:隐含层的数量
bidirectional: 是否选择使用双向LSTM,如果为True,则使用;默认不使用
"""
rnn=nn.GRU(input_size=5,hidden_size=6,num_layers=2)"""
设定输入的张量x
第一个参数:sequence_length(输入序列的长度)
第二个参数:batch_size(批次的样本数)
第三个参数:input_size(输入张量x的维度)
"""
input=torch.randn(1,3,5)
"""
设定初始化的h0
第一个参数:num_layers *num_directions(层数*网络方向数)
第二个参数:batch_size(批次的样本数)
第三个参数:hiddeh_size(隐藏层的维度)
"""
h0=torch.randn(2,3,6)"""
nn.GRU类实例化对象主要参数解释
input: 输入张量x.
h0:初始化的隐层张量h.
"""
output,hn=rnn(input,h0)

注意力模型

import torch
import torch.nn as nn
import torch.nn.functional as F#建立attn类
class Attn(nn.Module):def __init__(self, query_size,key_size,value_size1,value_size2,output_size):"""_summary_Args:query_size (_type_): 代表的是Q的最后一个维度key_size (_type_): 代表的K的最后一个维度value_size1 (_type_): 代表value的导数第二维大小value_size2 (_type_): 代表value的倒数第一维大小output_size (_type_): 代表输出的最后一个维度的大小"""super(Attn, self).__init__()self.query_size = query_sizeself.key_size = key_sizeself.value_size1 = value_size1self.value_size2 = value_size2self.output_size = output_size# 初始化注意力机制self.attn=nn.Linear(self.query_size+self.key_size,self.value_size1)self.attn_combine=nn.Linear(self.query_size+self.value_size2,self.output_size)def forward(self,query,key,value):"""_summary_Args:query (_type_): 代表Qkey (_type_): 代表Kvalue (_type_): 代表VReturns:_type_: 返回注意力机制的输出"""# 计算注意力权重attn_weights=F.softmax(self.attn(torch.cat((query[0],key[0]),1)),dim=1)attn_applied=torch.bmm(attn_weights.unsqueeze(0),value)# 计算注意力机制的输出output=torch.cat((query[0],attn_applied[0]),1)output=self.attn_combine(output).unsqueeze(0)return output,attn_weightsquery_size=32
key_size=32
value_size1=32
value_size2=64
output_size=64#初始化attn
attn=Attn(query_size,key_size,value_size1,value_size2,output_size)
#使用attn实例
Q=torch.randn(1,1,32)
K=torch.randn(1,1,32)
V=torch.randn(1,32,64)
output=attn(Q,K,V)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/342250.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

一、docker的安装与踩坑

目录 一、安装docker(centos7安装docker)1.安装环境前期准备2.参考官网安装前准备3.参考官网安装步骤开始安装docker4.运行首个容器 二、安装一些软件的踩坑1.启动docker踩坑2.安装mysql踩坑3.罕见问题三、关于我的虚拟机 一、安装docker(cen…

力士乐触摸屏维修触控屏VR2109.01-00-01-N2-NNN-A

Rexroth力士乐触控屏VCP20.1BUN.768PB-NN-PW数控系统屏幕维修及排查: 力士乐数控机床故障诊断的一般步骤都是相同的。当数控机床发生故障时,除非出现危险及数控机床或人身的紧急情况,一般不要关断电源,要尽可能地保持机床原来的状…

linux高级篇基础理论十一(GlusterFS)

♥️作者:小刘在C站 ♥️个人主页: 小刘主页 ♥️不能因为人生的道路坎坷,就使自己的身躯变得弯曲;不能因为生活的历程漫长,就使求索的 脚步迟缓。 ♥️学习两年总结出的运维经验,以及思科模拟器全套网络实验教程。专栏:云计算技…

《YOLO算法:基础+进阶+改进》报错解决 专栏答疑

前言:Hello大家好,我是小哥谈。《YOLO算法:基础进阶改进》专栏上线后,部分同学在学习过程中提出了一些问题,笔者相信这些问题其他同学也有可能遇到。为了让大家可以更好地学习本专栏内容,笔者特意推出了该篇…

Vant-ui图片懒加载

核心代码 在你的全局顶部引入和初始化 Vue.use(vant.Lazyload, {loading: /StaticFile/img/jiazai.jpg,error: /StaticFile/img/jiazai.jpg,lazyComponent: false, });//图片懒加载 <img v-lazy"https://img-blog.csdnimg.cn/direct/3d2c8a7e2c0040488a8128c3e381d58…

四、C++内存管理

1 C/C内存分布 在学习C的内存管理方式之前&#xff0c;我们先来看一道有关C/C内存分布的题目&#xff1a; 阅读下面的代码&#xff0c;回答相关问题&#xff1a; #include <iostream> using namespace std; int globalVar 1; static int staticGlobalVar 1; int main…

启动redis出现Creating Server TCP listening socket 127.0.0.1:6379: bind: No error异常

1.进入redis安装目录&#xff0c;地址栏输入cmd 2.输入命令 redis-server.exe redis.windows.conf redis启动失败 解决&#xff0c;输入命令 #第一步 redis-cli.exe#第二步 shutdown#第三步 exit第四步 redis-server.exe redis.windows.conf 显示以下图标即成功

【报错】检索 COM 类工厂中 CLSID 为 {28E68F9A-8D75-11D1-8DC3-3C302A000000} 的组件失败错误

情况描述 在使用C#进行工控软件开发&#xff0c;需要连接通过OPC连接DCS系统时&#xff0c;需要通过visual studio的NuGet包管理器添加OpcAutomation&#xff0c;如下图所示&#xff1a; 这样便可以实现通过C#连接读取数据。但是在通过C#连接OPC server时&#xff0c;会出现错…

ChatGpt使用技巧

通用类技巧 角色扮演 比如让ChatGpt扮演500强营销专家 告诉ChatGpt你的身份。初学者、或是有一定能力、知识的学习者等 限制ChatGpt回答长度 100~200字之间 让ChatGpt一步一步思考 他会预测下一个单词&#xff0c;根据prompt进行生成 明确你的要求和目的 说清楚问题&#x…

centos7下升级openssh9.4p1及openssl1.1.1v版本

背景&#xff1a;客户服务器扫描出一些漏洞&#xff0c;发现和版本有关&#xff0c;漏洞最高的版本是9.3p2&#xff0c;所以我们安装一个openssh9.4p1版本及openssl1.1.1v版本 虽然我们进行了镜像备份&#xff0c;为了安全先安装telnet以防止升级失败无法通过ssh连接服务器 一…

FFmpeg转码分辨率会变化的视频

遇到一个需求&#xff1a; 有一个H264的视频流源文件&#xff0c;希望能够想办法转换成mp4的格式。 存在的问题&#xff1a; mp4格式的视频大多数是固定分辨率的&#xff0c;比如960*480&#xff0c;如果h264视频流文件是固定尺寸的&#xff0c;那就没有任何问题。 但是&am…

2023年全球运维大会(GOPS上海站):核心内容与学习收获(附大会核心PPT下载)

随着科技的不断进步&#xff0c;运维行业也在经历着日新月异的变化。2023年全球运维大会&#xff08;GOPS上海站&#xff09;作为业内的一大盛会&#xff0c;汇集了众多顶尖的运维专家、学者和实践者&#xff0c;共同探讨和分享运维领域的前沿技术和实践经验。本文将深入剖析大…