(超详细)5-YOLOV5改进-添加A2Attention注意力机制

1、在yolov5/models下面新建一个A2Attention.py文件,在里面放入下面的代码
在这里插入图片描述
代码如下:

import numpy as np
import torch
from torch import nn
from torch.nn import init
from torch.nn import functional as Fclass DoubleAttention(nn.Module):def __init__(self, in_channels,c_m=128,c_n=128,reconstruct = True):super().__init__()self.in_channels=in_channelsself.reconstruct = reconstructself.c_m=c_mself.c_n=c_nself.convA=nn.Conv2d(in_channels,c_m,1)self.convB=nn.Conv2d(in_channels,c_n,1)self.convV=nn.Conv2d(in_channels,c_n,1)if self.reconstruct:self.conv_reconstruct = nn.Conv2d(c_m, in_channels, kernel_size = 1)self.init_weights()def init_weights(self):for m in self.modules():if isinstance(m, nn.Conv2d):init.kaiming_normal_(m.weight, mode='fan_out')if m.bias is not None:init.constant_(m.bias, 0)elif isinstance(m, nn.BatchNorm2d):init.constant_(m.weight, 1)init.constant_(m.bias, 0)elif isinstance(m, nn.Linear):init.normal_(m.weight, std=0.001)if m.bias is not None:init.constant_(m.bias, 0)def forward(self, x):b, c, h,w=x.shapeassert c==self.in_channelsA=self.convA(x) #b,c_m,h,wB=self.convB(x) #b,c_n,h,wV=self.convV(x) #b,c_n,h,wtmpA=A.view(b,self.c_m,-1)attention_maps=F.softmax(B.view(b,self.c_n,-1))attention_vectors=F.softmax(V.view(b,self.c_n,-1))# step 1: feature gatingglobal_descriptors=torch.bmm(tmpA,attention_maps.permute(0,2,1)) #b.c_m,c_n# step 2: feature distributiontmpZ = global_descriptors.matmul(attention_vectors) #b,c_m,h*wtmpZ=tmpZ.view(b,self.c_m,h,w) #b,c_m,h,wif self.reconstruct:tmpZ=self.conv_reconstruct(tmpZ)return tmpZ 

2、找到yolo.py文件,进行更改内容
在29行加一个from models.A2Attention. import DoubleAttention, 保存即可
在这里插入图片描述
3、找到自己想要更改的yaml文件,我选择的yolov5s.yaml文件(你可以根据自己需求进行选择),将刚刚写好的模块DoubleAttention加入到yolov5s.yaml里面,并更改一些内容。更改如下
在这里插入图片描述
4、在yolo.py里面加入两行代码(335-337)
保存即可!
在这里插入图片描述
运行一下
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/343327.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MySQL 8查询语句之查询所有字段、特定字段、去除重复字段、Where判断条件

《MySQL 8创建数据库、数据表、插入数据并且查询数据》里边有我使用到的数据。 再使用下方的语句补充一些数据: insert into Bookbought.bookuser(id,username,userphone,userage,sex,userpassword) values (11,Book Break,22245678911,18,male,good#111); insert…

啥,凭什么Python中函数的返回值可以有多个?

你好,我是安然无虞。 文章目录 函数函数定义格式函数调用默认参数和变长参数默认参数变长参数 变量的作用域 函数 编程语言中的函数,是一段可以被重复使用的代码片段,使用函数能够减少冗余的代码。 函数定义格式 def 函数名(形参列表):函数…

行为型设计模式——策略模式

策略模式 策略模式非常简单,只需要将策略或者某个算法定义成一个类,然后传给需要使用的对象即可。**定义:**该模式定义了一系列算法,并将每个算法封装起来,使它们可以相互替换,且算法的变化不会影响使用算…

电力能源监测管理系统,在医院中有哪些作用?

随着经济全球化的发展,节能减排成为当前社会发展必须关注的问题。电力能源监测管理系统,可以分析电力管理能源的现状,并根据现状提出对应的策略,为快速高效建成绿色智能化医院提供有力支撑和技术保障。 医院能源管理现状 1、人力…

2024云服务器哪家好?阿里云、腾讯云、华为云

作为多年站长使市面上大多数的云厂商的云服务器都使用过,很多特价云服务器都是新用户专享的,本文有老用户特价云服务器,阿腾云atengyun.com有多个网站、小程序等,国内头部云厂商阿里云、腾讯云、华为云、UCloud、京东云都有用过&a…

数字集成系统设计——物理设计

目录 一、布局规划 1.1 规划 1.2 I/O单元 1.3 电源网络 1.3.1 要求 1.3.2 网络架构 1.3.3 混合信号芯片示例 1.4 布局 二、时钟分布 2.1 时钟偏斜 2.2 时钟分布网络 2.3 时钟树综合 2.4 时钟树收敛 三、布线与参数提取 3.1 布线(Routing) 3.2 布线规则示例 …

Handsfree_ros_imu:ROS机器人IMU模块ARHS姿态传感器(A9)Liunx系统Ubuntu20.04学习启动和运行教程

这个是篇学习 Handsfree_ros_imu 传感器的博客记录 官方教程链接见: https://docs.taobotics.com/docs/hfi-imu/ 产品功能 IMU 内有 加速度计,陀螺仪,磁力计这些传感器,通过固定 imu 到物体上后,可以获取物体在运动…

虚拟机Ubuntu网络配置

电脑有两个系统,windows系统和ubuntu系统,那网卡到底给哪一个用呢,所以要选择桥接模式,就可以共用网卡 但是我们电脑网卡,有线网卡,无线网卡,到底使用哪个网卡,所以选择桥接到自动或…

一文玩转Go语言中的面向对象编程~

温故而知新:什么是面向对象 面向对象(Object-Oriented)是一种计算机编程的方法和思想,它将程序中的数据(对象)和操作(方法)组织成一个个相互关联和交互的对象。对象是现实世界中的事…

Find My游戏手柄|苹果Find My技术与手柄结合,智能防丢,全球定位

游戏手柄是一种常见电子游戏机的部件,通过操纵其按钮等,实现对游戏虚拟角色的控制。随着游戏设备硬件的升级换代,现代游戏手柄又增加了:类比摇杆(方向及视角),扳机键以及HOME菜单键等。现在的游…

活动 | Mint Blockchain 将于 2024 年 1 月 17 号启动 MintID 限量发行活动

MintID 是 Mint Blockchain 生态的超级权益卡,用于探索 NFT PASS 在未来各种应用场景下的可能性。MintID 将通过限时限量有价发售的方式对外释放,持有人将成为 Mint Blockchain 的核心权益用户。 MintID 总量:10,000 枚 铸造价格&#xff1a…

多无人机集群智能flocking

matlab2020可运行 GitHub - pareshbhambhani/MultiAgent-Flocking-framework: This is part of the current research I am working on.