【Python机器学习】深度学习——调参

        先用MLPClassifier应用到two_moons数据集上:

from sklearn.neural_network import MLPClassifier
from sklearn.datasets import make_moons
from sklearn.model_selection import train_test_split
import mglearn
import matplotlib.pyplot as pltplt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
X,y=make_moons(n_samples=100,noise=0.25,random_state=3)
X_train,X_test,y_train,y_test=train_test_split(X,y,stratify=y,random_state=42)mlp=MLPClassifier(solver='lbfgs',random_state=0)
mlp.fit(X_train,y_train)
mglearn.plots.plot_2d_separator(mlp,X_train,fill=True,alpha=.3)
mglearn.discrete_scatter(X_train[:,0],X_train[:,1],y_train)
plt.xlabel('特征0')
plt.ylabel('特征1')
plt.show()

        可以看到,神经网络学到的决策边界完全是非线性的,但相对平滑, 默认情况下,MLP使用100个隐结点,可以减少数量,降低模型复杂度,对于小型数据集来说,仍然可以得到很好的结果。

from sklearn.neural_network import MLPClassifier
from sklearn.datasets import make_moons
from sklearn.model_selection import train_test_split
import mglearn
import matplotlib.pyplot as pltplt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
X,y=make_moons(n_samples=100,noise=0.25,random_state=3)
X_train,X_test,y_train,y_test=train_test_split(X,y,stratify=y,random_state=42)mlp=MLPClassifier(solver='lbfgs',random_state=0,hidden_layer_sizes=[10],max_iter=10000)
mlp.fit(X_train,y_train)
mglearn.plots.plot_2d_separator(mlp,X_train,fill=True,alpha=.3)
mglearn.discrete_scatter(X_train[:,0],X_train[:,1],y_train)
plt.xlabel('特征0')
plt.ylabel('特征1')
plt.show()

可以看到,决策边界更加参差不齐。默认的非线性是relu,如果想要得到更平滑的决策边界,可以添加更多隐单元,或者使用tanh非线性。

from sklearn.neural_network import MLPClassifier
from sklearn.datasets import make_moons
from sklearn.model_selection import train_test_split
import mglearn
import matplotlib.pyplot as pltplt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
X,y=make_moons(n_samples=100,noise=0.25,random_state=3)
X_train,X_test,y_train,y_test=train_test_split(X,y,stratify=y,random_state=42)mlp=MLPClassifier(solver='lbfgs',activation='tanh',random_state=0,hidden_layer_sizes=[10,10],max_iter=10000)
mlp.fit(X_train,y_train)
mglearn.plots.plot_2d_separator(mlp,X_train,fill=True,alpha=.3)
mglearn.discrete_scatter(X_train[:,0],X_train[:,1],y_train)
plt.xlabel('特征0')
plt.ylabel('特征1')
plt.show()

除此以外,还可以利用L2惩罚使权重趋向于0,从而控制神经网络的复杂度,alpha的默认值很小,下面对不同参数下,神经网络结果的可视化:

from sklearn.neural_network import MLPClassifier
from sklearn.datasets import make_moons
from sklearn.model_selection import train_test_split
import mglearn
import matplotlib.pyplot as pltplt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
X,y=make_moons(n_samples=100,noise=0.25,random_state=3)
X_train,X_test,y_train,y_test=train_test_split(X,y,stratify=y,random_state=42)fig,axes=plt.subplots(2,4,figsize=(20,8))
for axx,n_hidden_nodes in zip(axes,[10,100]):for ax,alpha in zip(axx,[0.0001,0.01,0.1,1]):mlp = MLPClassifier(solver='lbfgs'#, activation='tanh', random_state=0, hidden_layer_sizes=[n_hidden_nodes, n_hidden_nodes],alpha=alpha,max_iter=10000)mlp.fit(X_train,y_train)mglearn.plots.plot_2d_separator(mlp,X_train,fill=True,alpha=.3,ax=ax)mglearn.discrete_scatter(X_train[:, 0], X_train[:, 1], y_train,ax=ax)ax.set_title('隐单元个数=[{},{}]\nalpha={:.4f}'.format(n_hidden_nodes,n_hidden_nodes,alpha))
plt.show()

神经网络的一个重要性质是:在开始学习之前,权重是随机设置的,这种随机化会影响学到的模型,也就是即使使用完全相同的参数,用的随机种子不同,也可能得到非常不一样的模型:

from sklearn.neural_network import MLPClassifier
from sklearn.datasets import make_moons
from sklearn.model_selection import train_test_split
import mglearn
import matplotlib.pyplot as pltplt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
X,y=make_moons(n_samples=100,noise=0.25,random_state=3)
X_train,X_test,y_train,y_test=train_test_split(X,y,stratify=y,random_state=42)fig,axes=plt.subplots(2,4,figsize=(20,8))
for i,ax in enumerate(axes.ravel()):mlp = MLPClassifier(solver='lbfgs'#,activation='tanh',random_state=i,hidden_layer_sizes=[100,100],max_iter=10000)mlp.fit(X_train,y_train)mglearn.plots.plot_2d_separator(mlp,X_train,fill=True,alpha=.3,ax=ax)mglearn.discrete_scatter(X_train[:, 0], X_train[:, 1], y_train,ax=ax)ax.set_title('随机初始化参数={:.4f}'.format(i))
plt.show()

用另一个例子,使用默认参数查看模型的特征数据和精度:


from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.linear_model import Ridge,LinearRegression,Lasso,LogisticRegression
import matplotlib.pyplot as plt
from sklearn.neural_network import MLPClassifierplt.rcParams['font.sans-serif']=['SimHei']
cancer=load_breast_cancer()print('癌症数据集每个特征的最大值:{}'.format(cancer.data.max(axis=0)))
X_train,X_test,y_train,y_test=train_test_split(cancer.data,cancer.target,random_state=0
)
mlp=MLPClassifier(random_state=0)
mlp.fit(X_train,y_train)print('训练集精度:{:.4f}'.format(mlp.score(X_train,y_train)))
print('测试集精度:{:.4f}'.format(mlp.score(X_test,y_test)))

MLP模型的精度很好,但是没有其他模型好,原因可能在于数据的缩放。神经网络也要求所有数据特征的变化范围相近,最理想的情况是均值为0,方差为1,人工处理:


#计算每个特征的平均值
mean_on_train=X_train.mean(axis=0)
#计算每个特征的标准差
std_on_train=X_train.std(axis=0)#减去平均值,然后乘标准差的倒数
#计算完成后mean=0,std=1
X_train_scaled=(X_train-mean_on_train)/std_on_train
X_test_scaled=(X_test-mean_on_train)/std_on_trainmlp_std=MLPClassifier(random_state=0)
mlp_std.fit(X_train_scaled,y_train)print('训练集精度:{:.4f}'.format(mlp_std.score(X_train_scaled,y_train)))
print('测试集精度:{:.4f}'.format(mlp_std.score(X_test_scaled,y_test)))

 

        可以看到缩放之后的结果要好很多,另外,增大迭代次数可以提高训练集性能,但不提高泛化性能。

        对特征重要性的可视化:


from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.linear_model import Ridge,LinearRegression,Lasso,LogisticRegression
import matplotlib.pyplot as plt
from sklearn.neural_network import MLPClassifierplt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus'] = False
cancer=load_breast_cancer()print('癌症数据集每个特征的最大值:{}'.format(cancer.data.max(axis=0)))
X_train,X_test,y_train,y_test=train_test_split(cancer.data,cancer.target,random_state=0
)
mlp=MLPClassifier(random_state=0)
mlp.fit(X_train,y_train)plt.figure(figsize=(20,5))
plt.imshow(mlp.coefs_[0],interpolation='none',cmap='viridis')
plt.yticks(range(30),cancer.feature_names)
plt.xlabel('隐单元权重')
plt.ylabel('输入特征')
plt.colorbar()
plt.show()

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/343890.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

xcode安装及运行源码

抖音教学视频 目录 1、xcode 介绍 2、xcode 下载 3、xocde 运行ios源码 4、快捷键 1、xcode 介绍 Xcode 是运行在操作系统Mac OS X上的集成开发工具(IDE),由Apple Inc开发。Xcode是开发 macOS 和 iOS 应用程序的最快捷的方式。Xcode 具有…

web网页首页布局

效果展示&#xff1a; html代码&#xff1a; <!doctype html> <html> <head><meta charset"utf-8"><meta http-equiv"X-UA-Compatible" content"IEedge,chrome1"> <meta name"viewport" content&qu…

Nginx安装http2和ssl模块

Nginx安装http2和ssl模块 Nginx在执行默认安装命令的时候&#xff0c;并不会编译启用ngx_http_v2_module模块。故在修改Nginx配置文件启用http2.0协议的时候会报错。 一.检查Nginx安装了哪些模块 #进入Nginx的安装目录 cd /usr/local/nginx #执行命令查看安装了哪些模块 ./sbi…

Pytorch基础:数据读取与预处理——调用PyTorch官方数据集

数据读取与预处理——调用PyTorch官方数据集 1. 从网络端下载 FashionMNIST 数据集到本地2. 数据集可视化 1. 从网络端下载 FashionMNIST 数据集到本地 (base) PS C:\Users\孙明阳> conda activate yang (yang) PS C:\Users\孙明阳> python Python 3.11.5 | packaged by…

VSCode 搭建Java开发环境

笔者使用最多的语言是C&#xff0c;也使用过不少其它语言&#xff0c;像Erlang&#xff0c;Python&#xff0c;Lua&#xff0c;C#等等&#xff0c;目前项目中在使用Go&#xff0c;但是没使用过Java。最近看到C#夺冠&#xff0c;首次荣获 TIOBE 年度编程语言&#xff0c;同时也看…

spring boot mybatis-plus dynamic-datasource 配置文件 相关依赖环境配置

spring boot mybatis-plus dynamic-datasource 配置文件 相关依赖环境配置 ##yaml配置 server:port: 8866servlet:context-path: /yymtomcat:max-threads: 300connection-timeout: 57000max-connections: 500connection-timeout: 57000 spring:datasource:dynamic:primary: m…

【C初阶——指针5】鹏哥C语言系列文章,基本语法知识全面讲解——指针(5)

本文由睡觉待开机原创&#xff0c;转载请注明出处。 本内容在csdn网站首发 欢迎各位点赞—评论—收藏 如果存在不足之处请评论留言&#xff0c;共同进步&#xff01; 这里写目录标题 1.sizeof和strlen的对比2.数组和指针笔试题&#xff08;借用sizeof与strlen进行体会&#xff…

ES分词器

Analysis&#xff1a;文本分析是把全文本转换一系列单词的过程&#xff0c;也叫分词。Analysis是通过Analyzer(分词器)来实现的。 1.Analyzer组成 注意&#xff1a;在ES中默认使用标准分词器&#xff1a;StandardAnalyzer。特点是&#xff1a;中文是单字分词&#xff0c;英文是…

供应链+低代码,实现数字化【共赢链】转型新策略

在深入探讨之前&#xff0c;让我们首先明确供应链的基本定义。供应链可以被理解为一个由采购、生产、物流配送等环节组成的网状系统&#xff0c;它始于原材料的采购&#xff0c;经过生产加工&#xff0c;最终通过分销和零售环节到达消费者手中。 而数字化供应链&#xff0c;则是…

Vue2x的自定义指令和render函数使用自定义指令

在某些情况下&#xff0c;我们需要对底层DOM进行操作&#xff0c;而内置的指令不能满足需求&#xff0c;就需要自定义指令。一个自定义指令由一个包含类似组件的生命周期的钩子的对象来定义&#xff0c;钩子函数会接收到指令所绑定的元素作为参数。 定义指令 常用两种方式进行…

达梦数据实时同步软件DMHS介绍和原理

1、产品介绍 达梦数据实时同步软件&#xff08;以下简称 DMHS&#xff09;是支持异构环境的高性能、高可靠、高可扩展数据库实时同步复制系统。该产品采用基于日志的结构化数据复制技术&#xff0c;不依赖主机上源数据库的触发器或者规则&#xff0c;对主机源数据库系统几乎无影…

Qt 调试体统输出报警声

文章目录 前言一、方法1 使用 Qsound1.添加都文件 直接报错2.解决这个错误 添加 QT multimedia3. 加入代码又遇到新的错误小结 二、第二种方法1.引入库 总结 前言 遇到一个需求&#xff0c;使用Qt输出报警声&#xff0c;于是试一试能调用的方法。 一、方法1 使用 Qsound 1.…