11.3、信赖域策略优化算法TRPO强化学习-运用实践

基于LunarLander登陆器的TRPO强化学习(含PYTHON工程)

TRPO强化学习算法主要分为3个部分,分别介绍其理论、细节、实现

本文主要介绍TRPO的理论和代码的对应、实践

TRPO系列(TRPO是真的复杂,全部理解花费了我半个月的时间嘞,希望也能帮助大家理解一下):
11.1、信赖域策略优化算法TRPO强化学习-从理论到实践
11.2、信赖域策略优化算法TRPO强化学习-约束优化求解
11.3、信赖域策略优化算法TRPO强化学习-运用实践

其他算法:
07、基于LunarLander登陆器的DQN强化学习案例(含PYTHON工程)

08、基于LunarLander登陆器的DDQN强化学习(含PYTHON工程)

09、基于LunarLander登陆器的Dueling DQN强化学习(含PYTHON工程)

10、基于LunarLander登陆器的Dueling DDQN强化学习(含PYTHON工程)

11、基于LunarLander登陆器的A2C强化学习(含PYTHON工程)

参考:
【TRPO系列讲解】(五)TRPO_理论推导篇

目录

    • 基于LunarLander登陆器的TRPO强化学习(含PYTHON工程)
    • 1、替代优势函数的计算
    • 2、替代优势函数导数的计算
    • 3、海森向量积的计算
    • 4、共轭梯度法求解 H − 1 g {{H^{ - 1}}g} H1g
    • 5、计算策略网络的更新步长
    • 6、更新步长回溯衰减
    • 7、基于LunarLander登陆器的TRPO强化学习(含PYTHON工程)

1、替代优势函数的计算

信赖域策略优化算法TRPO强化学习-从理论到实践中介绍了TRPO的核心函数:替代优势函数。
要优化的式子是:
max ⁡ θ L θ o l d ( θ ) = max ⁡ θ E s ∼ ρ θ o l d , a ∼ θ o l d [ π θ ( a ∣ s ) π θ o l d ( a ∣ s ) A θ o l d ( s , a ) ] s u b j e c t t o E s ∼ ρ θ o l d [ D K L ( π θ o l d ( ⋅ ∣ s ) ∥ π θ ( ⋅ ∣ s ) ) ] ≤ δ \begin{array}{l} {\max _\theta }{L_{{\theta _{old}}}}(\theta ) ={\max _\theta }E{_{s\sim{\rho _{{\theta _{old}}}},a\sim\theta_{old} }}\left[ {\frac{{{\pi _\theta }(a\mid s)}}{{{\pi _{{\theta _{old}}}}(a\mid s)}}{A_{{\theta _{old}}(s,a)}}} \right]\\ subject\;to\quad {E_{s\sim{\rho _{{\theta _{old}}}}}}\left[ {{D_{KL}}({\pi _{{\theta _{old}}}}( \cdot \mid s)\parallel {\pi _\theta }( \cdot \mid s))} \right] \le \delta \end{array} maxθLθold(θ)=maxθEsρθold,aθold[πθold(as)πθ(as)Aθold(s,a)]subjecttoEsρθold[DKL(πθold(s)πθ(s))]δ

替代优势函数 L θ o l d ( θ ) {L_{{\theta _{old}}}}(\theta ) Lθold(θ)的表达式为:
L θ o l d ( θ ) = E s ∼ ρ θ o l d , a ∼ θ o l d [ π θ ( a ∣ s ) π θ o l d ( a ∣ s ) A θ o l d ( s , a ) ] {L_{{\theta _{old}}}}(\theta ) =E{_{s\sim{\rho _{{\theta _{old}}}},a\sim\theta_{old} }}\left[ {\frac{{{\pi _\theta }(a\mid s)}}{{{\pi _{{\theta _{old}}}}(a\mid s)}}{A_{{\theta _{old}}(s,a)}}} \right] Lθold(θ)=Esρθold,aθold[πθold(as)πθ(as)Aθold(s,a)]
其中:
A π ( s , a ) = Q π ( s , a ) − V π ( s ) A_\pi(s,a)=Q_\pi(s,a)-V_\pi(s) Aπ(s,a)=Qπ(s,a)Vπ(s)

对应核心代码(考虑到熵实际上是额外的改进了):

	# 计算新旧动作概率之比,即当前策略与旧策略在给定状态下的动作选择概率之比prob_ratio = action_prob / old_action_prob  # pi(a|s) / pi_old(a|s)# 计算替代损失。这个损失主要由两部分组成:1) 基于新旧策略的动作概率之比的收益;2) entropy正则化项,由self.ent_coeff控制权重。loss = tf.reduce_mean(prob_ratio * advantage) + self.ent_coeff * entropy

状态价值函数V可以通过批评者网络得到,但是Q函数在TRPO中属于未知的,在此使用 U t U_t Ut近似,其原因如下:

Q(s,a)和Ut关系:Q(s,a)是Ut的期望,期望可以理解为求积分,实际上Q是对Ut把所有t之后的时刻(t+1、t+2等等)当作变量求积分得到的。因此Q(s,a)可以直观反应当前状态s下执行各个动作的好坏。
Q π ( s t , a t ) = E [ U t ∣ s t , a t ] Q_\pi(s_t,{a_t})=\mathbb{E}[U_t\mid s_t,{a_t}] Qπ(st,at)=E[Utst,at]

由此替代优势函数的计算的代码表达如下(代码里面叫surrogate_loss,其实是一样的):

# 计算状态价值函数
Vs = self.value_model(obs).numpy().flatten()
# 计算优势函数,Gs就是Ut
advantage = Gs - Vs
# 直接标准化
advantage = (advantage - advantage.mean())/(advantage.std() + 1e-8)
actions_one_hot = tf.one_hot(actions, self.envs[0].action_space.n, dtype="float64")
# 计算其替代函数L的损失
policy_loss = surrogate_loss()
def surrogate_loss(theta=None):# 如果theta为None,则使用self.model作为模型,否则使用self.tmp_model并为其赋值if theta is None:model = self.modelelse:model = self.tmp_modelassign_vars(self.tmp_model, theta)# 使用模型对obs进行预测,得到logitslogits = model(obs)# 对logits应用softmax函数,得到action的概率分布action_prob = tf.nn.softmax(logits)# 计算每个动作的概率之和,这里假设actions_one_hot是动作的one-hot编码action_prob = tf.reduce_sum(actions_one_hot * action_prob, axis=1)# 使用原始模型对obs进行预测,得到旧的logitsold_logits = self.model(obs)# 对旧的logits应用softmax函数,得到旧的动作概率分布old_action_prob = tf.nn.softmax(old_logits)# 计算每个动作的旧概率之和,并加上一个小的常数以避免除以0的错误old_action_prob = tf.reduce_sum(actions_one_hot * old_action_prob, axis=1).numpy() + 1e-8# 计算新旧动作概率之比,即当前策略与旧策略在给定状态下的动作选择概率之比prob_ratio = action_prob / old_action_prob  # pi(a|s) / pi_old(a|s)# 计算替代损失。这个损失主要由两部分组成:1) 基于新旧策略的动作概率之比的收益;2) entropy正则化项,由self.ent_coeff控制权重。loss = tf.reduce_mean(prob_ratio * advantage) + self.ent_coeff * entropy# 返回计算得到的损失值。return loss

2、替代优势函数导数的计算

信赖域策略优化算法TRPO强化学习-约束优化求解的第2部分中,替代优势函数的导数在更新中扮演着十分重要的作用,需要进行求解:
g T = ∇ θ L θ o l d ( θ ) ∣ θ = θ o l d {g^T} = {\nabla _\theta }{L_{{\theta _{old}}}}(\theta ){|_{\theta = {\theta _{old}}}} gT=θLθold(θ)θ=θold
θ ′ = 2 δ g T H − 1 g H − 1 g + θ \theta^{\prime}=\sqrt{\frac{2\delta}{g^{T}H^{-1}g}}H^{-1}g+\theta θ=gTH1g2δ H1g+θ

其对应的代码为:

# 计算替代优势函数的导数g
policy_gradient = flatgrad(surrogate_loss, self.model.trainable_variables).numpy()

其中,flatgrad是求导的函数,在代码中会多次用到:

# Makes gradient of function loss_fn wrt var_list and
# flattens it to have a 1-D vector 计算梯度,并将其扁平化
def flatgrad(loss_fn, var_list):with tf.GradientTape() as t:loss = loss_fn()grads = t.gradient(loss, var_list, unconnected_gradients=tf.UnconnectedGradients.ZERO)return tf.concat([tf.reshape(g, [-1]) for g in grads], axis=0)

3、海森向量积的计算

对于TRPO的不等式约束,我们对其使用二阶泰勒展开(证明参考自然梯度Natural Policy):
D K L ρ o l d ‾ ( π o l d , π n e w ) → 1 2 ( θ − θ o l d ) T A ( θ o l d ) ( θ − θ o l d ) H = A ( θ o l d ) = ∇ θ 2 D K L ρ o l d ‾ ( π o l d , π n e w ) \begin{aligned}\overline{D_{KL}^{\rho_{old}}}(\pi_{old},\pi_{new})\to\frac12(\theta-\theta_{old})^TA(\theta_{old})(\theta-\theta_{old})\\\\H=A(\theta_{old})=\nabla_\theta^2\overline{D_{KL}^{\rho_{old}}}(\pi_{old},\pi_{new})\end{aligned} DKLρold(πold,πnew)21(θθold)TA(θold)(θθold)H=A(θold)=θ2DKLρold(πold,πnew)

此外,我们需要使用共轭梯度法求解 H − 1 g {{H^{ - 1}}g} H1g矩阵,这等价于求解线性方程 H x = g Hx=g Hx=g,需要频繁使用到海森矩阵H和向量x的乘积。而且,海森矩阵需要对KL散度求二阶导得到,这是一个相对复杂的过程。【TRPO系列讲解】(六)TRPO_求解实现篇的第12min介绍了一种简单的运算加速方式,就是先对KL散度求一阶导数,然后乘以向量x,然后再对相乘后的式子求导
H i j = ∂ ∂ θ j ∂ D K L ∂ θ i y i = ∂ ∂ θ ∑ j ∂ D K L ∂ θ j x j y k = ∑ j H k j x j = ∑ j ∂ ∂ θ j ∂ D K L ∂ θ k x j = ∂ ∂ θ k ∑ j ∂ D K L ∂ θ j x j \begin{aligned} &H_{ij}=\frac{\partial}{\partial\theta_{j}}\frac{\partial D_{KL}}{\partial\theta_{i}} \\ &y_{i}=\frac{\partial}{\partial\theta}\sum_{j}\frac{\partial D_{KL}}{\partial\theta_{j}}x_{j} \\ &y_{k}=\sum_{j}H_{kj}x_{j} =\sum_{j}\frac{\partial}{\partial\theta_{j}}\frac{\partial D_{KL}}{\partial\theta_{k}}x_{j} \\ &=\frac{\partial}{\partial\theta_{k}}\sum_{j}\frac{\partial D_{KL}}{\partial\theta_{j}}x_{j} \end{aligned} Hij=θjθiDKLyi=θjθjDKLxjyk=jHkjxj=jθjθkDKLxj=θkjθjDKLxj

对应代码如下:

# 计算Hessian向量积
def hessian_vector_product(p):# 此处的p实际输入的是xdef hvp_fn():# 使用flatgrad函数计算kl_fn损失函数关于模型可训练变量的梯度,得到一个扁平化的梯度数组kl_grad_vectorkl_grad_vector = flatgrad(kl_fn, self.model.trainable_variables)# 计算梯度向量与给定向量p的点积,并将结果存储在grad_vector_product中grad_vector_product = tf.reduce_sum(kl_grad_vector * p)# 返回grad_vector_product的值return grad_vector_product# 使用flatgrad函数计算hvp_fn内部函数关于模型可训练变量的梯度,得到一个扁平化的梯度数组fisher_vector_productfisher_vector_product = flatgrad(hvp_fn, self.model.trainable_variables).numpy()# 返回fisher_vector_product的值,并加上cg_damping与向量p的乘积?return fisher_vector_product + (self.cg_damping * p)

4、共轭梯度法求解 H − 1 g {{H^{ - 1}}g} H1g

信赖域策略优化算法TRPO强化学习-约束优化求解的第4部分提到了,我们需要使用共轭梯度法求解 H − 1 g {{H^{ - 1}}g} H1g矩阵,这等价于求解线性方程 H x = g Hx=g Hx=g,需要频繁使用到海森矩阵H和向量x的乘积,这实际上是残差的计算。

其中policy_gradient 是对替代优势函数的导数,也就是g。hessian_vector_product函数作为conjugate_grad函数的第一个输入Ax,之后再调用Ax§计算海森矩阵和向量p的乘积。(至始至终都没有单独计算过海森矩阵的值,都是计算的海森矩阵和向量的乘积

对共轭梯度法不了解的参考我的另一个博客:最速下降法、梯度下降法、共轭梯度法—理论分析与实践

代码中step_direction 其实就是要计算的 H − 1 g {{H^{ - 1}}g} H1g矩阵。

# 计算替代优势函数的导数g
policy_gradient = flatgrad(surrogate_loss, self.model.trainable_variables).numpy()
# 使用共轭梯度法
step_direction = conjugate_grad(hessian_vector_product, policy_gradient)
		# 共轭梯度法def conjugate_grad(Ax, b):"""Conjugate gradient algorithm(see https://en.wikipedia.org/wiki/Conjugate_gradient_method)"""x = np.zeros_like(b)r = b.copy() # Note: should be 'b - Ax(x)', but for x=0, Ax(x)=0. Change if doing warm start.p = r.copy()old_p = p.copy()r_dot_old = np.dot(r,r)for _ in range(self.cg_iters):z = Ax(p)alpha = r_dot_old / (np.dot(p, z) + 1e-8)old_x = xx += alpha * pr -= alpha * zr_dot_new = np.dot(r,r)beta = r_dot_new / (r_dot_old + 1e-8)r_dot_old = r_dot_newif r_dot_old < self.residual_tol:breakold_p = p.copy()p = r + beta * pif np.isnan(x).any():print("x is nan")print("z", np.isnan(z))print("old_x", np.isnan(old_x))print("kl_fn", np.isnan(kl_fn()))return x

5、计算策略网络的更新步长

信赖域策略优化算法TRPO强化学习-约束优化求解的第3部分提到了,在TRPO算法中,其更新公式为:
θ ′ = 2 δ g T H − 1 g H − 1 g + θ \theta^{\prime}=\sqrt{\frac{2\delta}{g^{T}H^{-1}g}}H^{-1}g+\theta θ=gTH1g2δ H1g+θ

H − 1 g {{H^{ - 1}}g} H1g的数值我们可以通过共轭梯度法进行求解,那我们该如何计算更新的参数呢?

# 计算替代优势函数的导数g
policy_gradient = flatgrad(surrogate_loss, self.model.trainable_variables).numpy()
# 使用共轭梯度法,step_direction 是H-1*g
step_direction = conjugate_grad(hessian_vector_product, policy_gradient)
# 中间变量,计算的是
shs = .5 * step_direction.dot(hessian_vector_product(step_direction).T)lm = np.sqrt(shs / self.delta) + 1e-8
fullstep = step_direction / lm

根据如上的代码:
s h s = ( 1 2 H − 1 g ) ( H H − 1 g ) T = 1 2 g T H − 1 g l m = g T H − 1 g 2 δ f u l l s t e p = H − 1 g g T H − 1 g 2 δ = 2 δ g T H − 1 g H − 1 g \begin{array}{l} shs = \left( {\frac{1}{2}{H^{ - 1}}g} \right){\left( {H{H^{ - 1}}g} \right)^T} = \frac{1}{2}{g^T}{H^{ - 1}}g\\ lm = \sqrt {\frac{{{g^T}{H^{ - 1}}g}}{{2\delta }}} \\ fullstep = \frac{{{H^{ - 1}}g}}{{\sqrt {\frac{{{g^T}{H^{ - 1}}g}}{{2\delta }}} }} = \sqrt {\frac{{2\delta }}{{{g^T}{H^{ - 1}}g}}} {H^{ - 1}}g \end{array} shs=(21H1g)(HH1g)T=21gTH1glm=2δgTH1g fullstep=2δgTH1g H1g=gTH1g2δ H1g

和更新数据一致。

6、更新步长回溯衰减

但是,信赖域策略优化算法TRPO强化学习-约束优化求解的第5部分提到了,TRPO使用了太多的近似,理论的方程并不一定是最好的,那我们我们该如何做呢?我们可以选择小于 α \alpha α的学习率多次尝试(如 0. 9 1 α 0.9^1\alpha 0.91α 0. 9 2 α 0.9^2\alpha 0.92α 0. 9 3 α 0.9^3\alpha 0.93α 0. 9 4 α 0.9^4\alpha 0.94α…),直到找到一个能够提升替代优势 L θ o l d ( θ ) {L_{{\theta _{old}}}}(\theta ) Lθold(θ)的学习率,这个过程被称为LineSearch:

	# 在给定方向上找到函数的局部最小值,最优化算法def linesearch(x, fullstep):# fval = surrogate_loss(x)for (_n_backtracks, stepfrac) in enumerate(self.backtrack_coeff**np.arange(self.backtrack_iters)):xnew = x + stepfrac * fullstepnewfval = surrogate_loss(xnew)kl_div = kl_fn(xnew)if np.isnan(kl_div):print("kl is nan")print("xnew", np.isnan(xnew))print("x", np.isnan(x))print("stepfrac", np.isnan(stepfrac))print("fullstep",  np.isnan(fullstep))if kl_div <= self.delta and newfval >= 0:print("Linesearch worked at ", _n_backtracks)return xnewif _n_backtracks == self.backtrack_iters - 1:print("Linesearch failed.", kl_div, newfval)return x

7、基于LunarLander登陆器的TRPO强化学习(含PYTHON工程)

基于TensorFlow 2.10

主要代码来自github上的一位小哥,但是原来的效果太差了:
在这里插入图片描述
我稍微修改优化了一下,下面的两张图第一个是每次运行的得分,第二张为均值平滑后的曲线,因为使用了wandb,实际上运行了大约300个episode,作者原来的因该是运行500个episode的结果嘞(LR是价值网络的学习率,因为使用了自然梯度法,策略网络的学习率无需手动设置)。优化后基本能跑个200多分,算是还可以吧。
在这里插入图片描述
工程可以从最上方链接下载,喜欢就点个赞吧。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/343969.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

计算机组成原理-计算机的发展(计算机系统 硬件发展 软件发展 微处理器和微计算机的发展 摩尔定律 发展趋势)

文章目录 总览什么是计算机系统软件硬件的发展第一代第二代第三代第四代微处理器的发展相关人物摩尔定律 软件的发展目前的发展趋势小结 总览 什么是计算机系统 软件 语言处理程序就是编译程序之类的 调试代码就是服务程序 硬件的发展 第一代 逻辑元件&#xff1a;处理电信…

【Leetcode】2085. 统计出现过一次的公共字符串

文章目录 题目思路代码 题目 2085. 统计出现过一次的公共字符串 思路 使用两个哈希表 words1Count 和 words2Count 分别统计两个数组中每个单词的出现次数。然后遍历 words1Count 中的每个单词&#xff0c;如果该单词在 words1 中出现了一次&#xff0c;且在 words2 中也出…

知识库软件有很多,这几个最好用

时代进步的同时&#xff0c;逐渐优化的企业知识库已经成为企业优化工作效率、提升企业竞争力的重要工具。随着云计算和大数据技术的快速发展&#xff0c;知识库软件如雨后春笋般出现在人们的视野中。下面&#xff0c;我从寻宝者的角度&#xff0c;向大家稳稳地推荐三款最优秀的…

DHCP与时间同步

目录 一、DHCP 1、DHCP定义 1.什么是DHCP 2.DHCP的好处 3.DHCP的分配方式 4.为什么使用DHCP 5.DHCP模式 2、DHCP的工作过程 3、DHCP动态配置主机地址 1.DHCP服务的优点 2.可分配的地址信息 3.动态分配IP地址 二、时间同步 1、ntp 2、chrony 1、搭建本地本地时间…

C++学习笔记——类继承

目录 一、一个简单的基类 1.1封装性 1.2继承性 1.3虚函数 1.4多态性 二、基类 2.1一个简单的C基类的示例 2.2 Animal是一个基类。 三、继承 3.1概念 3.2is-a关系 3.3多态公有继承 3.4静态联编和动态联编 3.5访问控制 3.6ABC理念 一、一个简单的基类 C中的基类是一…

从vue小白到高手,从一个内容管理网站开始实战开发第七天,登录功能后台功能设计--通用分页、枚举以及相关工具类

上一篇实现了数据库访问层的相关功能,还没有了解的小伙伴可以去看前面文章实现的内容,因为每一篇内容都是连贯的,不学习的话可能下面的内容学习起来会有点摸不着头脑 从vue小白到高手,从一个内容管理网站开始实战开发第六天,登录功能后台功能设计--API项目中的登录实现(二…

Java十大经典算法—KMP

字符串匹配问题&#xff1a; 1.暴力匹配 public class ViolenceMatch {public static void main(String[] args) {String str1 "硅硅谷 尚硅谷你尚硅 尚硅谷你尚硅谷你尚硅你好";String str2 "尚硅谷你尚硅你好";int index violenceMatch(str1, str2);S…

zookeeper下载安装部署

zookeeper是一个为分布式应用提供一致性服务的软件&#xff0c;它是开源的Hadoop项目的一个子项目&#xff0c;并根据google发表的一篇论文来实现的。zookeeper为分布式系统提供了高效且易于使用的协同服务&#xff0c;它可以为分布式应用提供相当多的服务&#xff0c;诸如统一…

轻松上手Linux文件操作:五种方法教你创建文件

轻松上手Linux文件操作&#xff1a;五种方法教你创建文件 一、引言二、使用touch命令创建文件三、使用文本编辑器创建文件四、使用echo命令创建文件五、使用cat命令创建文件六、使用重定向符号创建文件七、总结 一、引言 本文介绍五种在Linux系统中创建文件的方法&#xff0c;…

提高iOS App开发效率的方法

引言 随着智能手机的普及&#xff0c;iOS App开发成为越来越受欢迎的技术领域之一。许多人选择开发iOS应用程序来满足市场需求&#xff0c;但是iOS App开发需要掌握一些关键技术和工具&#xff0c;以提高开发效率和质量。本文将介绍一些关键点&#xff0c;可以帮助你进行高效的…

Centos7,Python3.7.6安装模块Crypto,pycryptodome,ibm_db,requests,requests_pkcs12

Centos7,Python3.7.6安装模块Crypto&#xff0c;pycryptodome&#xff0c;ibm_db&#xff0c;requests,requests_pkcs12 Python版本&#xff1a;python3.7.6 对应的各种模块 前言&#xff1a;把python项目放到linux上运行时&#xff0c;提示缺少各种模块&#xff0c;安装命令…

redis缓存雪崩、穿透和击穿

缓存雪崩 对于系统 A&#xff0c;假设每天高峰期每秒 5000 个请求&#xff0c;本来缓存在高峰期可以扛住每秒 4000 个请求&#xff0c;但是缓存机器意外发生了全盘宕机或者大量缓存集中在某一个时间段失效。缓存挂了&#xff0c;此时 1 秒 5000 个请求全部落数据库&#xff0c;…