基于Hadoop的网上购物行为大数据分析及预测系统【flask+echarts+机器学习】前后端交互

在这里插入图片描述
有需要本项目或者部署的系统可以私信博主,提供远程部署和讲解

本研究基于淘宝用户行为的开源数据展开大数据分析研究,通过Hadoop大数据分析平台对阿里天池公开的开源数据集进行多维度的用户行为分析,为电商销售提供可行性决策。

在这里插入图片描述

首先我们将大数据集上传到Hadoop中的HDFS存储,之后利用Hadoop的Flume组件,配置好自动加载数据的环境,将数据加载到hive数据库中进行大数据分析。

通过对常见的电商指标:PV、UV、跳失率、复购率等进行统计分析,按照时间维度对用户的行为、活跃度等指标进行多维度透视分析,然后对电商数据中的热销ID及热销商品类别、用户地理位置进行统计分析。将分析出来的结果表,存入到hive数据库中,然后利用sqoop组件,将hive数据库中的结果表自动导出到关系型数据库MySQL中,便于数据的存储和分析展示。

在这里插入图片描述

之后对于分析的结果数据表,采用Python的pyecharts可视化库进行前端可视化展示,通过调用MySQL中的数据集,绘制多维度的可视化图表类型,便于理解和展示。最后,结合pyecharts中page方法对这些可视化利用前后端交互的大屏可视化展示设计,并结合HTML大屏可视化进行静态数据的写入,搭建一个炫酷的可视化大屏。将这些结果通过丰富的图表展示出来可以帮助决策者可以快速做出决策。

在这里插入图片描述

为了保证数据的高效集成和展示,本研究基于flask框架开发出基于Hadoop+echarts+MySQL+机器学习的系统化产品。

Hadoop操作

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

可视化展示

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

系统页面展示

个人信息查看

在这里插入图片描述
便签记录

在这里插入图片描述
在这里插入图片描述

修改密码

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

机器学习

在这里插入图片描述

本研究的主要目的是利用淘宝用户行为的开源数据展开大数据分析研究,以提供对于电商销售的可行性决策。为此,本研究选择了阿里天池公开的开源数据集,并将其上传到Hadoop的HDFS存储中进行存储。之后,利用Hadoop的Flume组件对数据进行自动加载,将数据加载到hive数据库中进行大数据分析。

在分析的过程中,本研究首先针对常见的电商指标,如PV、UV、跳失率、复购率等进行统计分析,以了解用户行为的基本情况。然后,按照时间维度对用户的行为、活跃度等指标进行多维度透视分析,进一步了解用户行为的变化趋势和规律。此外,本研究还对电商数据中的热销ID及热销商品类别、用户地理位置等因素进行统计分析,以了解用户购买行为的特点和偏好。

为了便于数据的存储和分析展示,本研究将分析出来的结果表存入到hive数据库中,并利用sqoop组件将其自动导出到关系型数据库MySQL中。在此基础上,本研究采用Python的pyecharts可视化库进行前端可视化展示,通过调用MySQL中的数据集,绘制多维度的可视化图表类型,便于理解和展示。最后,结合pyecharts中page方法对这些可视化利用前后端交互的大屏可视化展示设计,并结合HTML大屏可视化进行静态数据的写入,搭建一个炫酷的可视化大屏。这些结果通过丰富的图表展示出来可以帮助决策者可以快速做出决策。

综上所述,本研究的总体研究路线可以概括为:首先,对于淘宝用户行为的开源数据进行大数据分析,包括基本指标、多维度透视分析以及用户购买行为的特点和偏好。然后,将分析结果存储到hive数据库中,并导出到MySQL数据库,便于数据的存储和分析展示。最后,采用Python的pyecharts可视化库进行前端可视化展示,通过调用MySQL中的数据集,绘制多维度的可视化图表类型,搭建一个炫酷的可视化大屏,以便于理解和展示分析结果,帮助决策者快速做出决策。

本研究的研究路线的详细描述如下:

(1)数据准备和存储
本研究选择了阿里天池公开的淘宝用户行为开源数据集作为研究对象。首先将数据集上传到Hadoop的HDFS存储中,并利用Hadoop的Flume组件配置好自动加载数据的环境,将数据加载到hive数据库中进行大数据分析。

(2)数据分析和统计
本研究采用多维度的数据分析方法,针对常见的电商指标,如PV、UV、跳失率、复购率等进行统计分析。同时,按照时间维度对用户的行为、活跃度等指标进行多维度透视分析,了解用户行为的变化趋势和规律。此外,还对电商数据中的热销ID及热销商品类别、用户地理位置等因素进行统计分析,以了解用户购买行为的特点和偏好。

(3)数据存储和可视化展示
为了便于数据的存储和分析展示,本研究将分析出来的结果表存入到hive数据库中,并利用sqoop组件将其自动导出到关系型数据库MySQL中。在此基础上,本研究采用Python的pyecharts可视化库进行前端可视化展示,通过调用MySQL中的数据集,绘制多维度的可视化图表类型。结合pyecharts中page方法对这些可视化进行前后端交互的大屏可视化展示设计,并结合HTML大屏可视化进行静态数据的写入,搭建一个炫酷的可视化大屏。这些结果通过丰富的图表展示出来可以帮助决策者可以快速做出决策。

(4)结果分析和决策制定
最后,本研究将分析结果进行汇总和分析,形成对于电商销售的可行性决策。根据分析结果,决策者可以了解用户行为的特点和偏好,针对性地制定营销策略和推广方案,以提高销售效果和客户满意度。

综上所述,本研究采用淘宝用户行为的开源数据进行大数据分析研究,通过Hadoop大数据分析平台进行多维度的用户行为分析,最终形成对于电商销售的可行性决策。这个研究路线结合了大数据存储和处理技术、数据分析和统计方法以及数据可视化展示技术,为电商销售提供了一个有力的支持。

总结

研究首先利用Hadoop的HDFS存储系统存储数据,然后通过Flume组件自动加载数据到Hive数据库中进行分析。研究重点关注了电子商务关键指标,如PV、UV、跳失率、重复购买率等,并进行多维度透视分析以洞察用户行为和活跃度。

此外,研究还详细分析了热销商品ID、商品类别和用户地理位置,以探索不同产品类别的销售业绩和电子商务指标。分析结果存储于Hive数据库后,通过Sqoop组件导出到MySQL,然后使用Python的Pyecharts可视化库进行结果展示。这包括创建一个前后端交互的大屏可视化展示,结合HTML技术展现静态数据。

此外,研究还利用了大数据分析和机器学习算法,如随机森林、XGBoost和MLP(BP神经网络),构建了一个用于预测在线购物行为的模型。通过解决数据不均衡问题,该模型在预测用户购买行为方面取得了高达99%的准确率,展现出卓越的预测能力。总之,本研究为各种产品的在线销售提供了全面的决策支持,突显了大数据分析在电子商务领域的巨大潜力。"

每文一语

学习不断的才能适应新的环境

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/344191.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Paddle模型转ONNX

深度学习模型在硬件加速器上的部署常常要用到ONNX(Open Neural Network Exchange,开放神经网络交换)格式,也可以通过ONNX实现不同AI框架(如Pytorch、TensorFlow、Caffe2、PaddlePaddle等)之间的模型转换。 …

[渗透测试学习] Surveillance -HackTheBox

文章目录 信息搜集getshell提权信息搜集 nmap扫描端口 nmap -sV -sC -v -p- --min-rate 1000 10.10.11.245扫出来两个端口,其中80端口有http服务并且重定向到surveillance.htb 那么我们添加下域名然后访问80端口,发现是企业网站尝试扫描子域名和目录无果后,用Wappalyzer插…

云防护概念及云防护作用

云防护是什么 云防护是一种网络安全技术,旨在保护云计算环境中的数据和系统免受恶意攻击和未授权访问。 云防护适用场景 一切http.https.tcp协议,如游戏、电商、金融、物联网等APP PC 网站。 云防护的主要作用 云防护的主要作用是通过搭规模庞大的云防…

NowinAndroid—2024 Android现代开发全功能应用

NowinAndroid—2024 Android现代开发全功能应用 现代Android开发全功能示例应用Now-in-Android,它是用Kotlin和Jetpack Compose开发的,功能非常强大。这个应用遵循了安卓设计和开发的最佳方法,旨在给开发者提供实用的参考资料。无论你是新手…

【控制篇 / 策略】(7.4) ❀ 04. 修改IP地理位置数据库 ❀ FortiGate 防火墙

【简介】虽然通过FortiGuard服务可以更新IP地理位置数据库,但是实际使用环境中,总会有部分IP地址不符合我们的愿景,这种情况下,可以通过修改IP地理位置数据库来达到我们的目标。 更新IP地理位置数据库 更新IP地理位置数据库是Fort…

嵌入式linux 编译qt5(以v851s为例)

本文参考Blev大神的博客:Yuzuki Lizard V851S开发板 --移植 QT5.12.9教程(群友Blev提供) - Allwinner / 柚木PI-V851S - 嵌入式开发问答社区 (100ask.net) 一. 环境准备 1.下载qt5源码:Open Source Development | Open Source …

LeetCode刷题:141. 环形链表

题目: 是否独立解答出:否,有思路,但是代码报错,参考解题代码后,修改通过 解题思路:利用循环与哈希表存储每一个节点,如果发现添加不进去说明,存在环,正常来说…

Docker的基础概念及命令

这篇主要介绍一下Docker比较重要的两个概念,镜像和容器,以及操作它们的一些常用命令。 文章目录 一、基础命令二、镜像三、容器 一、基础命令 docker -v:查看 Docker 的版本 systemctl start docker:启动docker systemctl stat…

刚买的助听器就弄丢了,不想白配,快来看看这8大助听器防丢小技巧

我们知道助听器可以让听损人士重新听到美妙的声音和享受沟通的乐趣。但是,助听器也是一种很贵的物品,如果不小心弄丢了,就会让人心痛不已。 更有甚者,有些人因为害怕丢失助听器,而不敢佩戴助听器,错过了听力…

基于SSM的驾校预约管理系统

基于SSM的驾校预约管理系统的设计与实现~ 开发语言:Java数据库:MySQL技术:SpringSpringMVCMyBatis工具:IDEA/Ecilpse、Navicat、Maven 系统展示 主页 详情 管理员界面 摘要 随着社会的不断发展,驾驶技能的需求逐渐增…

大数据人工智能在线实习项目:某实习网站招聘信息采集与分析

01前置课程 Python编程基础 Python网络爬虫实战 Python爬虫环境与爬虫简介 网页前端基础 简单静态网页爬取 常规动态网页爬取 模拟登录 Python数据分析与应用、可视化 数据分析概述 Numpy数值计算 Pandas统计分析与数据预处理 Matplotlib可视化 Pyecharts绘图 02师…

第一波!2024年1月精选6款实用AI人工智能设计工具合集

大家好,这是进入2024年之后的第一波干货合集!这次的干货合集还是以 AI 相关的设计干货开头,这次有了在本地无限制帮你清理图片中元素的 AI 工具,有知名免费图库出品的实时 AI 图片生成工具、将截图直接转化为代码的超强工具&#…