Python电能质量扰动信号分类(五)基于CNN-Transformer的一维信号分类模型

目录

往期精彩内容:

引言

1 数据集制作与加载

1.1 导入数据

1.2 制作数据集

2 CNN-Transformer分类模型和超参数选取

2.1定义CNN-Transformer分类模型

2.2 设置参数,训练模型

3 模型评估

3.1 准确率、精确率、召回率、F1 Score

3.2 十分类混淆矩阵:

代码、数据如下:


往期精彩内容:

电能质量扰动信号数据介绍与分类-Python实现-CSDN博客

Python电能质量扰动信号分类(一)基于LSTM模型的一维信号分类-CSDN博客

Python电能质量扰动信号分类(二)基于CNN模型的一维信号分类-CSDN博客

Python电能质量扰动信号分类(三)基于Transformer的一维信号分类模型-CSDN博客

Python电能质量扰动信号分类(四)基于CNN-BiLSTM的一维信号分类模型-CSDN博客

引言

本文基于Python仿真的电能质量扰动信号,先经过数据预处理进行数据集的制作和加载,然后通过Pytorch实现CNN-Transformer模型对扰动信号的分类。

Python仿真电能质量扰动信号的详细介绍可以参考下文(文末附10分类数据集):

电能质量扰动信号数据介绍与分类-Python实现_pypower计算电网频率质量-CSDN博客

部分扰动信号类型波形图如下所示:

1 数据集制作与加载

1.1 导入数据

在参考IEEE Std1159-2019电能质量检测标准与相关文献的基础上构建了扰动信号的模型,生成包括正常信号在内的10中单一信号和多种复合扰动信号。参考之前的文章,进行扰动信号10分类的预处理:

第一步,按照公式模型生成单一信号

单一扰动信号可视化:

第二步,导入十分类数据

import pandas as pd
import numpy as np# 样本时长0.2s  样本步长1024  每个信号生成500个样本  噪声0DB  
window_step = 1024
samples = 500
noise = 0
split_rate = [0.7, 0.2, 0.1]  # 训练集、验证集、测试集划分比例# 读取已处理的 CSV 文件
dataframe_10c = pd.read_csv('PDQ_10c_Clasiffy_data.csv' )
dataframe_10c.shape

1.2 制作数据集

第一步,定义制作数据集函数

第二步,制作数据集与分类标签

2 CNN-Transformer分类模型和超参数选取

2.1定义CNN-Transformer分类模型

注意:输入数据维度为[64, 1, 1024], 先送入CNN网络进行1d的卷积池化,然后再把卷积池化的空间特征送入Transformer进行信号特征增强,最终送入全连接层和softmax进行分类。

2.2 设置参数,训练模型

100个epoch,准确率将近100%,CNN-Transformer模型分类效果良好,分类准确率高,性能优越,适当调整模型参数,可以进一步提高分类准确率。

注意调整参数:

  • 可以适当增加 CNN层数和隐藏层维度数,微调学习率;

  • 增加Transformer编码器层数和维度数,增加更多的 epoch (注意防止过拟合)

  • 可以改变一维信号堆叠的形状(设置合适的长度和维度)

3 模型评估

3.1 准确率、精确率、召回率、F1 Score

3.2 十分类混淆矩阵:

代码、数据如下:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/344318.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

asp.net core项目发布到 iis上

我们都知道与传统asp.net 项目比较,ASP.NET Core则完全不同,它并不是运行在IIS的工作进程中,而是独立运行的。它运行于控制台应用程序之中,控制台中则运行了Kestrel Web服务器组件。Kestrel作为一款.NET Web服务器的实现&#xff…

智邦国际ERP系统 SQL注入漏洞

产品介绍 智邦国际ERP系统是一款功能丰富、灵活可定制的企业管理软件,能够帮助企业实现资源优化、流程优化和业务增长,具有高度的灵活性和可定制性,可以根据不同企业的需求进行个性化配置和拓展。 漏洞描述 智邦国际ERP系统 GetPersonalSe…

C++ 手写堆 || 堆模版题:堆排序

输入一个长度为 n 的整数数列,从小到大输出前 m 小的数。 输入格式 第一行包含整数 n 和 m 。 第二行包含 n 个整数,表示整数数列。 输出格式 共一行,包含 m 个整数,表示整数数列中前 m 小的数。 数据范围 1≤m≤n≤105 &…

Windows开机后,Docker失败:Commoncauses include access rights issues

这种错误看似已经跟你说很清楚了,但是看国外docker社区也提到这个问题,一大堆回答解决了别人的问题,但未必解决你的。我写自己的方案,可能也未必适合你,如果要说Root Cause根源就是windows的虚拟化功能开启的问题。 An…

【Leetcode】2696. 删除子串后的字符串最小长度

文章目录 题目思路代码 题目 2696. 删除子串后的字符串最小长度 思路 计算通过删除字符串中的 “AB” 和 “CD” 子串后,可获得的最终字符串的最小长度。 主要思路是使用一个栈来模拟字符串的处理过程,每次遍历字符串时,如果当前字符和栈…

vmlinux, System.map; cmake的find_package(Clang)产生的变量们; geogebra单位切向量(简单例子)

linux4.15.y内核中的函数个数 依赖关系: vmlinux, vmlinux.bin, bzImage cd /bal/linux-stable/ file vmlinux #vmlinux: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), statically linked, BuildID[sha1]b99bbd9dda1ec2751da246d4a7ae4e6fcf7d789b, not str…

【模型评估 04】A/B测试的陷阱

互联网公司中,A/B测试是验证新模块、新功能、新产品是否有效;新算法、新模型的效果是否有提升;新设计是否受到用户欢迎;新更改是否影响用户体验的主要测试方法。在机器学习领域中,A/B测试是验证模型最终效果的主要手段…

Windows下安装部署Redis

一、下载 地址:https://github.com/MSOpenTech/redis/releases Redis-x64-3.2.100.msi版的比较简单,下载之后直接下一步,下一步… 即可完成安装部署。 这里主要演示Redis-x64-3.2.100.zip的安装部署过程,将Redis-x64-3.2.100.z…

超维空间M1无人机使用说明书——61、ROS无人机物体识别与精准投放

引言:基于空中物流的项目背景。我们提供了使用基于诗句的物体识别和精准投放、降落。实现原理如下: 1、在ROS下使用机载电脑实现物体识别 2、记载电脑根据反馈的位置发布运动控制指令 3、PX4解析机载电脑发布的命令,作出运动控制 4、设置…

MySQL的Windows系统安装

一、MySQL的Windows系统安装 1、下载MySQL安装包 打开如下链接地址,下载安装包 2、安装并配置 双击下载好的安装包进行安装,出现如下界面: 选择【 Full 】选项,然后单击【 Next 】按钮。 出现如下界面,单击【 Execute…

计算机毕业设计---SSH协会志愿者服务管理系统

项目介绍 该项目分为前后台,分为管理员与普通用户两种角色,前台为普通用户登录,后台为管理员登录; 管理员角色包含以下功能: 管理员登录,管理员管理,志愿者管理,活动管理,捐赠管理,关于我们管理,友情链接管理,新闻类…

第11章 GUI Page495~496 步骤三十一:另存为别的文件,为TrySaveFile()入参设置一些位操作

工程二 头文件中为TrySaveFile()入参设置一些位操作,修改一下TrySaveFile()的入参类型 修改TrySaveFile()的实现: 修改“保存”菜单项挂接事件响应函数: 修改“另存为”菜单项挂接事件响应函数