基于YOLOv8深度学习的苹果叶片病害智能诊断系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】
3.【手势识别系统开发】4.【人脸面部活体检测系统开发】
5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】
7.【YOLOv8多目标识别与自动标注软件开发】8.【基于YOLOv8深度学习的行人跌倒检测系统】
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统】
11.【基于YOLOv8深度学习的安全帽目标检测系统】12.【基于YOLOv8深度学习的120种犬类检测与识别系统】
13.【基于YOLOv8深度学习的路面坑洞检测系统】14.【基于YOLOv8深度学习的火焰烟雾检测系统】
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统】16.【基于YOLOv8深度学习的舰船目标分类检测系统】
17.【基于YOLOv8深度学习的西红柿成熟度检测系统】18.【基于YOLOv8深度学习的血细胞检测与计数系统】
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统】20.【基于YOLOv8深度学习的水稻害虫检测与识别系统】
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统】22.【基于YOLOv8深度学习的路面标志线检测与识别系统】
22.【基于YOLOv8深度学习的智能小麦害虫检测识别系统】23.【基于YOLOv8深度学习的智能玉米害虫检测识别系统】
24.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统】25.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统】
26.【基于YOLOv8深度学习的人脸面部表情识别系统】

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】

《------正文------》

基本功能演示

在这里插入图片描述

摘要:苹果叶片病害智能诊断系统在农业科技和精准农业中扮演着极其重要的角色。此技术通过高效准确地识别不同的叶片病害,可以大幅提升农业生产的质量与效率。本文基于YOLOv8深度学习框架,通过13775张图片,训练了一个进行苹果叶片病害智能诊断的识别模型,可用于检测9种不同的苹果病害。并基于此模型开发了一款带UI界面的苹果叶片病害智能诊断系统,可用于实时识别场景中的苹果病害类型,更方便进行功能的展示。该系统是基于pythonPyQT5开发的,支持图片批量图片视频以及摄像头进行识别检测。本文提供了完整的Python代码和使用教程,给感兴趣的小伙伴参考学习,完整的代码资源文件获取方式见文末

文章目录

  • 基本功能演示
  • 前言
  • 一、软件核心功能介绍及效果演示
    • 软件主要功能
    • (1)图片检测演示
    • (2)视频检测演示
    • (3)摄像头检测演示
  • 二、模型的训练、评估与推理
    • 1.YOLOv8的基本原理
    • 2. 数据集准备与训练
    • 3.模型训练
    • 4. 训练结果评估
    • 5. 利用模型进行推理
  • 【获取方式】
  • 结束语

点击跳转至文末《完整相关文件及源码》获取


前言

苹果叶片病害智能诊断系统在农业科技和精准农业中扮演着极其重要的角色。此技术通过高效准确地识别不同的叶片病害,可以大幅提升农业生产的质量与效率。作为一种快速、无创的诊断工具,它可以帮助农民及时发现苹果园的病害情况,进而采取相应的防治措施,这对于减少作物损失、降低化学农药的使用以及保护生态环境都至关重要。

应用场景方面,该系统首先可以在苹果种植园区广泛部署。通过移动设备或装载在农用无人机上的相机收集叶片图像,系统将这些图像数据实时处理并识别出具体病害类型,从而使得农业管理人员可以进行有针对性的病害防控。此外,它也适用于农业研究机构和农业扩展服务中,用于监测病害发展趋势和研究病害与环境因素的关系。
在科研领域,它有助于研究人员收集和分析大量数据,促进新型病害防治技术的开发。
此系统还可以融入智能农业信息平台,为农户提供实时病害预警服务,让农户能更快作出反应,科学施肥和用药。随着AI技术与物联网的结合,苹果叶片病害智能诊断系统的应用前景将愈加广阔,不仅助力提升农业生产水平,也是实现可持续农业发展的关键工具之一。

博主通过搜集苹果叶片病害的相关数据图片,根据YOLOv8的目标检测技术,基于python与Pyqt5开发了一款界面简洁的苹果叶片病害智能诊断系统,可支持图片、批量图片、视频以及摄像头检测

软件初始界面如下图所示:
在这里插入图片描述

检测结果界面如下:
在这里插入图片描述

一、软件核心功能介绍及效果演示

软件主要功能

1. 可进行9种不同苹果叶片诊断识别,分别为:['交链孢叶斑病','褐斑病','青枯病','灰斑病','健康','花叶病毒病','白粉病','锈病','疮痂病'];
2. 支持图片、批量图片、视频以及摄像头检测
3. 界面可实时显示识别结果置信度用时等信息;

(1)图片检测演示

单个图片检测操作如下:
点击打开图片按钮,选择需要检测的图片,就会显示检测结果。操作演示如下:
在这里插入图片描述
批量图片检测操作如下:
点击打开文件夹按钮,选择需要检测的文件夹【注意是选择文件夹】,可进行批量图片检测,表格中会有所有图片的检测结果信息,点击表格中的指定行,会显示指定行图片的检测结果双击路径单元格,会看到图片的完整路径。操作演示如下:
在这里插入图片描述

(2)视频检测演示

点击打开视频按钮,打开选择需要检测的视频,就会自动显示检测结果。
在这里插入图片描述

(3)摄像头检测演示

点击打开摄像头按钮,可以打开摄像头,可以实时进行检测,再次点击摄像头按钮,可关闭摄像头。
在这里插入图片描述

二、模型的训练、评估与推理

1.YOLOv8的基本原理

YOLOv8是一种前沿的检测与识别技术,它基于先前YOLO版本在目标检测与识别任务上的成功,进一步提升了性能和灵活性。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行
其主要网络结构如下:
在这里插入图片描述

2. 数据集准备与训练

本文使用的苹果叶片病害数据集共包含13775张图片,分为9个类别,分别是:['交链孢叶斑病','褐斑病','青枯病','灰斑病','健康','花叶病毒病','白粉病','锈病','疮痂病']。部分数据集及类别信息如下:
在这里插入图片描述

在这里插入图片描述

图片数据集的存放格式如下,在项目目录中新建datasets目录,同时将分类的图片分为训练集与验证集放入DiseaseData目录下。
在这里插入图片描述

3.模型训练

数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:

#coding:utf-8
from ultralytics import YOLO# 加载预训练模型
model = YOLO("yolov8n-cls.pt")
if __name__ == '__main__':model.train(data='datasets/DiseaseData', epochs=300, batch=4)# results = model.val()

4. 训练结果评估

在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练结束后,可以在runs/目录下找到训练过程及结果文件,如下所示:
在这里插入图片描述

本文训练结果如下:
在这里插入图片描述
在这里插入图片描述

5. 利用模型进行推理

模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt文件,在runs/trian/weights目录下。我们可以使用该文件进行后续的推理检测。
在这里插入图片描述

图片检测代码如下:

#coding:utf-8
from ultralytics import YOLO
import cv2# 所需加载的模型目录
path = 'models/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/Brown spot (18).jpg"# 加载模型
model = YOLO(path, task='classify')# 检测图片
results = model(img_path)
res = results[0].plot()
# res = cv2.resize(res,dsize=None,fx=0.3,fy=0.3,interpolation=cv2.INTER_LINEAR)
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)

执行上述代码后,会将执行的结果直接标注在图片上,结果如下:
在这里插入图片描述

以上便是关于此款苹果叶片病害智能诊断系统的原理与代码介绍。基于此模型,博主用pythonPyqt5开发了一个带界面的软件系统,即文中第二部分的演示内容,能够很好的支持图片、批量图片、视频及摄像头进行检测

关于该系统涉及到的完整源码、UI界面代码、数据集、训练代码、测试图片视频等相关文件,均已打包上传,感兴趣的小伙伴可以通过下载链接自行获取。


【获取方式】

关注下方名片G-Z-H:【阿旭算法与机器学习】,回复【源码】即可获取下载方式

本文涉及到的完整全部程序文件:包括python源码、数据集、训练代码、UI文件、测试图片视频等(见下图),获取方式见文末:
在这里插入图片描述

注意:该代码基于Python3.9开发,运行界面的主程序为MainProgram.py,其他测试脚本说明见上图。为确保程序顺利运行,请按照程序运行说明文档txt配置软件运行所需环境,【包含环境配置说明文档和一键环境配置脚本文件】。

关注下方名片GZH:【阿旭算法与机器学习】,回复【源码】即可获取下载方式


结束语

以上便是博主开发的基于YOLOv8深度学习的苹果叶片病害智能诊断系统的全部内容,由于博主能力有限,难免有疏漏之处,希望小伙伴能批评指正。
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

觉得不错的小伙伴,感谢点赞、关注加收藏哦!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/410533.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Mysql流程控制函数

1概述 Mysql中的流程控制函数非常重要,可以根据不同的条件,执行不同的流程转换,可以在SQL语句中实现不同的条件选择。MySQL中的流程处理函数主要包括IF()、IFNULL()和CASE()函数。 1.1 IF函数 SELECT IF(1 > 0, 正确, 错误);1.2 IFNULL…

Web Animation API

工作中经常会遇到需要动画的场景,连贯动画都是用CSS实现,,但是如果遇到需要用户互动介入的动画,那纯CSS很比较吃力,也不是不能实现,需要动态修改CSS变量,而且动画容易被JS代码阻塞,导…

flink1.14.5使用CDH6.3.2的yarn提交作业

使用CDH6.3.2安装了hadoop集群,但是CDH不支持flink的安装,网上有CDH集成flink的文章,大都比较麻烦;但其实我们只需要把flink的作业提交到yarn集群即可,接下来以CDH yarn为基础,flink on yarn模式的配置步骤…

JS-var 、let 、 const使用介绍

变量声明介绍 在我们日常开发用,变量声明有三个 var、 let 和 const,我们应该用那个呢? 首先var 先排除,老派写法,问题很多,可以淘汰掉…let or const ?建议: const 优先,尽量使…

JVM运行时数据区(下篇)

紧接上篇:JVM运行时数据区(上篇)-CSDN博客 堆 一般Java程序中堆内存是空间最大的一块内存区域。创建出来的对象都存在于堆上。 栈上的局部变量表中,可以存放堆上对象的引用。静态变量也可以存放堆对象的引用,通过静态…

SC20-EVB ubuntu14.04 Andriod 5.1 SDK编译下载

1.ubuntu14.04安装环境配置 vi /etc/profile to add export JAVA_HOME/usr/lib/jvm/java-7-openjdk-amd64 export JRE_HOME J A V A H O M E / j r e e x p o r t C L A S S P A T H . : {JAVA_HOME}/jre export CLASSPATH.: JAVAH​OME/jreexportCLASSPATH.:{JAVA_HOME}/lib…

Node.js安装

bibi视频 node.js安装 1去官网下载对应的软件 也可以直接下载我分享的安装包 链接:https://pan.baidu.com/s/1Q_Tfcn4f-J1y07Ce2SsMXw?pwdf11n 提取码:f11n –来自百度网盘超级会员V3的分享 2选择安装目录 3验证NodeJS环境变量\ NodeJS 安装完毕后…

FFmpeg连载6-音频重采样

今天我们的实战内容是将音频解码成PCM,并将PCM重采样成特定的采样率,然后输出到本地文件进行播放。 什么是重采样? 所谓重采样,一句话总结就是改变音频的三元素,也就是通过重采样改变音频的采样率、采样格式或者声道数…

新增PostgreSQL数据库管理功能,1Panel开源面板v1.9.3发布

2024年1月15日,现代化、开源的Linux服务器运维管理面板1Panel正式发布v1.9.3版本。 在这一版本中,1Panel新增了PostgreSQL数据库管理功能,并且支持设置PHP运行环境扩展模版。此外,我们进行了30多项功能更新和问题修复。1Panel应用…

网站SEO优化方案

1,去各类搜索引擎里面,注册你的站点 解决方案:注册地址:https://seo.chinaz.com/chinaz.com 2,网站地址使用 https 会增加搜索排名 解决方案:https:www.xxx.com 3,官网每个页面的 meta 里面&a…

基于WebSocket双向通信技术实现-下单提醒和催单(后端)

学习复盘和总结项目亮点。 扩展:该功能能应用在,各种服务类项目中。(例如:酒店、洗脚城等系ERP系中提醒类服务) 4. 来单提醒 4.1 需求分析和设计 用户下单并且支付成功后,需要第一时间通知外卖商家。通…

[GN] nodejs16.13.0版本完美解决node-sass和sass-loader版本冲突问题

项目场景: npm install 运行vue项目时候 问题描述 项目场景:sass-loader ,node-sass出错 ! ERESOLVE unable to resolve dependency tree npm ERR! npm ERR! While resolving: smoore-mes-web1.4.0 npm ERR! Found: webpack3.12.0 npm ER…