【k8s】Kubernetes技术和相关命令简介

一、 Kubernetes简介

Kubernetes是Google开源的一个容器编排引擎,它支持自动化部署、大规模可伸缩、应用容器化管理。在生产环境中部署一个应用程序时,通常要部署该应用的多个实例以便对应用请求进行负载均衡。kubernetes,简称K8s,是用8代替8个字符“ubernete”而成的缩写。
在Kubernetes中,我们可以创建多个容器,每个容器里面运行一个应用实例,然后通过内置的负载均衡策略,实现对这一组应用实例的管理、发现、访问,而这些细节都不需要运维人员去进行复杂的手工配置和处理。

二、 Kubernetes功能模块

2.1 Kubernetes Pod

Pod是Kubernetes中能够创建和部署的最小单元,是Kubernetes集群中的一个应用实例,总是部署在同一个节点Node上。Pod中包含了一个或多个容器,还包括了存储、网络等各个容器共享的资源。Pod支持多种容器环境,Docker则是最流行的容器环境。Pod内的容器会一起启动、停止,每个Pod会有自己独立的内部动态IP,在Pod新建或重启时会重新分配新的IP。Pod会有自己的Label用来标示Pod的服务内容。Service会根据服务的Label来绑定Service与Pod之间的管理。Pod自身不具有高可用等特性,Pod一般不会直接使用,而是通过RC等方式进行调度使用。如图2-1所示的Pod1中有2个容器,其IP地址为10.10.10.1,Pod2中有3个容器,其IP地址为10.10.10.2,Pod3中有3个容器,其IP地址为10.10.10.3,Pod4中有4个容器,其IP地址为10.10.10.4。
在这里插入图片描述

图 2-1 Pod

2.2 Kubernetes Label

Label是Kubernetes系统中另外一个核心概念,一个Label是一个key=value的键值对,其中key与value由用户自己指定。Label可以附加到各种资源对象上,例如Node、Pod、Service、RC等,一个资源对象可以定义任意数量的Label,同一个Label也可以被添加到任意数量的资源对象上去,Label通常在资源对象定义时确定,也可以在对象创建后动态添加或者删除。如图2-2所示的Pod1的Label=service1,Pod2的Label=service2,Pod3的Label=service2,Pod4的Label=service3。
在这里插入图片描述

图 2-2 Label

2.3 Kubernetes Service

Kubernetes中一个应用服务会有一个或多个实例(Pod),每个实例(Pod)的IP地址由网络插件动态随机分配。为屏蔽这些后端实例的动态变化和对多实例的负载均衡,引入了Service这个资源对象,Service与其后端Pod副本集群之间则是通过Label Selector来实现"无缝对接"。用户访问Pod的服务均需要通过Service进行。每个Service会分配一个独立的ClusterIP,并通过Selector的Label标示来选择相应的Pod。如果有多个相同Label的Pod,Service服务会自动在Pod之间Round-Robin。(负载均衡算法),ClusterIP随着Service的生命周期产生销毁,期间不会发生变化。如图2-3所示,Service1对应的pod为pod1,其Cluster IP地址为10.1.0.10,端口号为1000,Service2对应的pod为pod2和pod3,其Cluster IP地址为10.1.0.11,端口号为4321,Service3对应的pod为pod4,其Cluster IP地址为10.1.0.12,端口号为1234。
在这里插入图片描述

图 2-3 Service

2.4 Kubernetes RC

Kubernetes RC是Pod的复制、管理、监控工具,Pod自身不具有高可用的特性,而RC则提供了一系列的高可用特性。例如设定RC的replication数量为2,那么相同的Pod会被创建2次,例如Label=Service2的Pod,如果Pod2出现问题而失效(例如物理机器down),那么RC会发现replication的数量变成了1,则会自动的再创建一个Label=Service2的Pod,保证服务的可用性。RC是Kubernetes使用POD推荐的方法,即使只建立一个Pod,也要使用RC来创建,从而保证服务的可用性。如图2-4所示,label=service2的pod有两个副本。
在这里插入图片描述

图 2-4 Replication Controller

2.5 etcd

etcd是一个分布式的Key/Value存储系统,数据写入节点中后会自动的同步到其他的节点之上。etcd通过raft算法自主进行master选举,当master失效时,会自动重新选择新的master节点,从而保证etcd集群的高可用,如图2-5所示,当一个节点的数据更新时数据会同步到其他节点上
在这里插入图片描述

图 2-5 etcd

三、 Kubernetes组件及架构

一个K8S系统,通常称为一个K8S集群,这个集群主要包括两个部分:一个Master节点(主节点):负责管理和控制,一群Node节点(计算节点):工作负载节点,里面是具体的容器,如图3-1所示是一个典型的K8S架构。

在这里插入图片描述

图 3-1 K8S架构

3.1 Master节点

Master节点包括API Server、Scheduler、Controller manager、etcd等服务。Scheduler负责对集群内部的Pod进行调度,相当于“调度室”。Controller manager负责集群的管理,相当于“大总管”。API Server是整个系统的对外接口,供客户端和其它组件互相通信,相当于“营业厅”。etcd负责集群的数据同步,相当于存放数据的“仓库”,如图3-2所示就是一个Master节点及其所包含的服务。
在这里插入图片描述

图 3-2 Master节点

3.1.1 Controller manager

Controller Manager是各种controller的管理者,是集群内部的管理控制中心,Controller Manager作为集群内部的管理控制中心,负责集群内的Node、Pod副本、服务端点(Endpoint)、命名空间(Namespace)、服务账号(ServiceAccount)、资源定额(ResourceQuota)的管理,当某个Node意外宕机时,Controller Manager会及时发现并执行自动化修复流程,确保集群始终处于预期的工作状态。

3.1.2 Scheduler

Scheduler只负责Pod调度,通过算法来计算pod和Node节点的对应关系。在整个系统中起“承上启下”作用,承上:负责接收Controller Manager创建的新的Pod,为其选择一个合适的Node,启下:Node上的kubelet接管Pod的生命周期。如图3-3所示,Pod1、Pod2和Pod3对应在Node1上,Pod3和Pod4对应在Node2上。
在这里插入图片描述

图 3-3 Scheduler

3.1.3 API Server

API server作为集群的核心,负责各个功能模块之间的通信。集群中各个模块通过API server将信息存入etcd,当需要获取和操作这些数据时,则通过API server提供的REST接口来实现,从而实现各模块之间的信息交互。集群内部各个模块之间通信的枢纽:所有模块之前并不会之间互相调用,而是通过和 API Server 打交道来完成自己那部分的工作,集群之间各个组件的通信关系如图3-4所示。
在这里插入图片描述

图 3-4 API Server

3.2 Node节点

Node是工作负载节点,上面承载着容器,Node节点包括Pod、kubelet、kube-proxy。Pod是Kubernetes最基本的操作单元。一个Pod代表着集群中运行的一个进程,它内部封装了一个或多个紧密相关的容器。Kubelet主要负责监视指派到它所在Node上的Pod,包括创建、修改、监控、删除等。Kube-proxy:对Node提供网络代理和LB功能,配合Service提供网络服务。如图3-5所示为两个Node节点,Node1上面有Pod1、Pod2和Pod3,Node2上面有Pod4。
在这里插入图片描述

图 3-5 Node节点

3.2.1 Kubelet

kubelet 是运行在每个节点上的主要的“节点代理”,每个节点都会启动 kubelet进程,用来处理 Master 节点下发到本节点的任务,管理Pod 和其中的容器。其功能主要为:1)Pod管理,获取Pod的状态,运行的容器数量,种类,副本数量,网络配置等。2)容器监控:定时汇报当前节点的资源使用情况给API Server,让Master节点知道整个集群所有节点的资源情况,以供调度时使用。3)容器健康状态检查:如果容器运行出错,就要根据设置的重启策略进行处理。4)镜像和容器的清理工作:保证节点上镜像不会占满磁盘空间,退出的容器不会占用太多资源。如下图所示,Node1和Node2上的Kubelet获取了Pod状态后,通过API Server将Pod状态告知Master节点。如图3-6所示为Kubelet服务。
在这里插入图片描述

图 3-6 Kubelet

3.2.2 Kube-proxy

kube-proxy的这个组件运行在每个node节点上。kube-proxy进程其实就是一个智能的软件负载均衡器,它会负责把对Service的请求转发到后端的某个Pod实例上并在内部实现服务的负载均衡与会话保持机制。它监听API server中service和endpoint的变化情况,并通过iptables等来为服务配置负载均衡,是让我们的服务在集群外可以被访问到的重要方式。Kube-proxy与service在集群中的工作原理如图3-7所示。
在这里插入图片描述

图3-7 Kube-proxy工作原理

四、 实验

根据上述所介绍的Kubernetes架构,我们直接通过在H3Cloud OS 3.0的实际环境来帮助我们更好的理解。

4.1 获取集群节点信息

首先,我们搭建好了Kubernetes的集群环境,输入命令检查H3Cloud OS系统运行状态,查看各节点状态信息,命令为“/opt/bin/kubectl –s 127.0.0.1:8888 get node”,如图4-1所示各节点都处于Ready状态。
在这里插入图片描述

图 4-1 节点状态信息

4.2 获取集群Pod信息

H3Cloud OS采用容器化架构,Pod的运行状态反应了提供服务的容器的状态,Pod状态运行正常即表示相关服务正常。使用root用户登录Master节点,执行以下命令查看服务组件所在节点,通过输入命令:“/opt/bin/kubectl –s 127.0.0.1:8888 get pode -o wide”可以看到如图4-2所示的Pod信息。NAME列显示了各个Pod的名称,READY列显示了Pod的运行个数和设定的副本数,1/1中的前一个1表示当前运行了一个Pod,后一个1表示此Pod的设定副本数为1,STATUS列显示了Pod的运行状态,可以观察到pod都是处于running状态的,AGE列显示了Pod的运行时间,可以看到大部分的Pod的运行时长都在20小时以上,IP列显示了Pod的IP地址,NODE列显示了该服务组件所在节点的IP地址。
在这里插入图片描述

图4-2 Pod信息

4.3 获取集群Docker信息

查看H3Cloud OS云平台使用容器进程的运行状态:输入命令docker ps ,如图4-3所示,输出显示的第一列为容器的UUID信息,第二列为容器使用的镜像名称,第三列为启动容器时运行的命令,第四列为容器的创建时间,显示格式为**时间之前创建,第五列为容器的运行状态,第六列为容器的端口信息和使用的连接类型(tcp\udp)名称,第七列为容器的名称。
在这里插入图片描述

图 4-3 Docker信息
通过使用命令:pod | grep glance可以只查看包含glance名称的容器实例,如图4-4所示。
在这里插入图片描述

图 4-4 包含glance名称的容器实例
进入Glance容器实例中,使用命令:kubectl exec –it <pod名称> bash;H3Cloud OS业务均有不同的容器提供,容器内服务状态异常会导致相关的功能异常。容器内执行命令:systemctl status <服务名称>,结果如图4-5所示。
在这里插入图片描述

图 4-5 容器服务状态

五、 总结

K8S是谷歌公司发明的容器集群的管理工具,它具有Pod,Label,Service,RC,etcd等高级功能。一个K8S集群通常是由一个Master节点和一群Node节点构成,Master节点主要负责管理和控制整个集群,其组件主要包括Controller manager:是集群内部的管理控制中心;Scheduler:负责Pod调度,通过算法来计算pod和Node节点的对应关系;API Server:集群内各个功能组件不能直接通信,需要通过API Server来实现通信。Node节点是工作负载节点,上面承载着容器,主要包括Pod: Kubernetes中能够创建和部署的最小单元,是Kubernetes集群中的一个应用实例,里面是具体的容器;Kubelet:是运行在每个节点上的主要的“节点代理”,每个节点都会启动 kubelet进程,用来处理 Master 节点下发到本节点的任务;Kube-proxy:运行在每个node节点上,是让我们的服务在集群外可以被访问到的重要方式。在H3Cloud OS 3.0中也运用了k8s这一重要技术来管理容器,在进入到H3Cloud OS 3.0后台时可以通过相关命令查看容器的信息和运行状态。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/411911.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

飞桨分子动力学模拟-论文复现第六期:复现TorchMD

飞桨分子动力学模拟-论文复现第六期&#xff1a;复现TorchMD Paddle for MD 飞桨分子动力学模拟科学计算 复现论文-TorchMD: A deep learning framework for molecular simulations 本项目可在AIStudio一键运行&#xff1a;飞桨分子动力学模拟PaddleMD-复现TorchMD 【论文复…

怎么给文件夹设置密码?文件夹设置密码怎么操作?

我们经常会将电脑中的重要数据储存在文件夹中&#xff0c;以方便管理。而为了避免数据泄露&#xff0c;我们需要给文件夹设置密码&#xff0c;以提高文件夹的安全性。那么&#xff0c;怎么给文件夹设置密码呢&#xff1f;下面我们就一起来了解一下。 方法一&#xff1a;文件夹加…

HttpServletRequest getServerPort()、getLocalPort() 、getRemotePort() 区别

getRemotePort() 、getServerPort()、getLocalPort() request.getServerPort()、request.getLocalPort() 和 request.getRemotePort() 这三个方法都是获取与HTTP请求相关的端口信息的 客户端(如浏览器)通过某个随机分配的网络连接端口(7070) 向服务器发送HTTP请求( http://exam…

2024年网络安全比赛--内存取证(超详细)

一、竞赛时间 180分钟 共计3小时 二、竞赛阶段 竞赛阶段 任务阶段 竞赛任务 竞赛时间 分值 1.从内存文件中找到异常程序的进程&#xff0c;将进程的名称作为Flag值提交&#xff1b; 2.从内存文件中找到黑客将异常程序迁移后的进程编号&#xff0c;将迁移后的进程编号作为Flag值…

通过篡改请求方法、Body体、拓展、默认凭证、UA等方法绕过40X页面

免责声明 本文发布的工具和脚本&#xff0c;仅用作测试和学习研究&#xff0c;禁止用于商业用途&#xff0c;不能保证其合法性&#xff0c;准确性&#xff0c;完整性和有效性&#xff0c;请根据情况自行判断。 如果任何单位或个人认为该项目的脚本可能涉嫌侵犯其权利&#xff…

鸿蒙Harmony--AppStorage--应用全局的UI状态存储详解

无所求必满载而归&#xff0c;当你降低期待&#xff0c;降低欲望&#xff0c;往往会得到比较好的结果&#xff0c;把行动交给现在&#xff0c;用心甘情愿的态度&#xff0c;过随遇而安的生活&#xff0c;无论结果如何&#xff0c;都是一场惊喜的获得! 目录 一&#xff0c;定义 …

VS+QT编译环境中字符乱码问题详解

字符乱码问题详解 1 编码字符集与字符编码方式2 字符乱码原因3 字符乱码解决方案 在解释字符乱码问题之前&#xff0c;我们需要先理清一些基本概念 1 编码字符集与字符编码方式 编码字符集 编码字符集是所有字符以及对应代码值的集合。编码字符集中的每个字符都对应一个唯一的…

智能安全帽定制_基于联发科MT6762平台的智能安全帽方案

智能安全帽是一种具备多项功能的高科技产品&#xff0c;其功能集成了视频通话监控、高清图像采集、无线数据传输、语音广播对讲、定位轨迹回放、静默报警、危险救援报警、脱帽报警、碰撞报警、近电报警以及智能调度系统等&#xff0c;同时还支持多功能模块的自由添加&#xff0…

python数字图像处理基础(七)——直方图均衡化、傅里叶变换

目录 直方图均衡化均衡化原理均衡化效果标准直方图均衡化自适应直方图均衡化 傅里叶变换原理低通滤波高通滤波 直方图均衡化 均衡化原理 图像均衡化是一种基本的图像处理技术&#xff0c;通过更新图像直方图的像素强度分布来调整图像的全局对比度。这样做可以使低对比度的区域…

高密数据中心卓越运维,更灵活助力企业 AI 就绪

AIGC的高速发展将企业对基础架构的需求推上了新的层次&#xff0c;根据中国通服数字基建产业研究院发布的《中国数据中心产业发展白皮书&#xff08;2023&#xff09;》报告&#xff0c;互联网行业客户对单机柜功率密度的要求较高&#xff0c;一般在6-8kW&#xff0c;金融行业处…

一个小程序跳转到另一个小程序中如何实现

小程序 保证两个小程序是一样的主体才可以跳转。怎么知道是不是同样的主体呢&#xff1f; 小程序的后台管理-设置-基本设置-基本信息。查看主体信息。 跳转 <button clicktoOtherMini()>跳转到另一个小程序</button> function toOtherMini(){wx.navigateToMini…

【USTC】verilog 习题练习 21-25

21 基于端口名称的实例化 题目描述 创建一 verilog 电路&#xff0c;实现对模块 mod_a 基于端口名称的实例化&#xff0c;如下图所示&#xff1a; 其中mod_a模块的代码为&#xff1a; module mod_a (output out1,output out2,input in1,input in2,input in3,in…