【Python数据可视化】matplotlib之绘制常用图形:折线图、柱状图(条形图)、饼图和直方图

文章传送门

Python 数据可视化
matplotlib之绘制常用图形:折线图、柱状图(条形图)、饼图和直方图
matplotlib之设置坐标:添加坐标轴名字、设置坐标范围、设置主次刻度、坐标轴文字旋转并标出坐标值
matplotlib之增加图形内容:设置图例、设置中文标题、设置网格效果
matplotlib之设置子图:绘制子图、子图共享x轴坐标
matplotlib之绘制高级图形:散点图、热力图、等值线图、极坐标图
matplotlib之绘制三维图形:三维散点图、三维柱状图、三维曲面图

目录

  • 简述 / 前言
  • 1. 折线图
  • 2. 柱状图(条形图)
  • 3. 饼图
  • 4. 直方图

简述 / 前言

这篇文章主要讲解Python数据可视化库 matplotlib 的一些操作,由于知识点较多,所以应该会分多篇文章进行分享。具体可以参考 matplotlib 官网,下面附上一些小贴士,5 张图片掌握 matplotlib 主要知识点,这5张图片来源于 matplotlib 官网的备忘录。后面的文章只会总结一些重点内容,不会面面俱到,所以对绘制某一个图形感兴趣的伙伴,可以直接去官网看教程和例子。更详细的教程可能会在 Python 教程那里给出,等有时间再写吧~

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述


在这里插入图片描述
在这里插入图片描述


这一篇主要分享用 matplotlib 绘制常用图形:折线图、柱状图(条形图)、饼图和直方图。

画完图都要使用 show() 方法才能看到图像哦~


1. 折线图

绘制折线图,一般需要读取 x, y 轴的数据,再通过 plot 方法绘制折线图,示例如下:

import matplotlib.pyplot as plt
import numpy as np# 设置x轴和y轴的坐标
x = np.arange(0, 9, 2)      # [0, 9) 每间隔1个数取一次值,即:x = [0 2 4 6 8]
y = np.array([0, 1, 4, 6, 8])
print(f"x = {x}")
print(f"y = {y}")plt.plot(x, y)  # 通过plot方法绘制折线
plt.show()  # 通过show方法展示

输出:
请添加图片描述

可以看到在绘制折线图时,只给了它坐标轴的值,但是没有给线条颜色、样式等属性,这是因为 matplotlib 已经封装好一些默认值了,如果要修改,可以通过可变参数 **kwargs 来改动,常用的属性如下:

属性含义
color线的颜色
linewidth线的宽度(厚度)
linestyle线的样式 【虚线::,破折线:--,点划线:-.
marker坐标点的标记方式 【实心圆:o,加号:+,五角星:*,点:.,叉叉:x,上三角形:^,下三角形:v,左三角形:<,右三角形:>,正方形:s,菱形:d,五边形:p,六边形:h,下划线:(_或者数字的01)】
alpha透明度,取值范围:[0, 1],值越小越透明

现在对上面的折线图进行修改,看看效果:

import matplotlib.pyplot as plt
import numpy as np# 设置x和y轴的坐标
x = np.arange(0, 9, 2)
plt.plot(x, x * 0.5, color='#33141e', linewidth='10', linestyle=':', alpha=0.2)
plt.plot(x, x, color='blue', linewidth='1', linestyle='--', marker='v', alpha=0.5)
plt.plot(x, x * 1.5, color='red', linewidth='3', linestyle='-.', marker='o', alpha=1)
plt.show()

输出:
请添加图片描述

2. 柱状图(条形图)

关键语句:matplotlib.pyplot.bar(x, height, ...)

一般会这么写:matplotlib.pyplot.bar(x, height, alpha=alpha, width=width, color=color, edgecolor=edgecolor, label=label, lw=lw),各参数含义如下:

属性含义
xx轴的位置序列
height每个x对应的条形图高度,注意:len(x) == len(height)
alpha透明度,取值范围:[0, 1],值越小越透明
width每条柱状图的宽度(也可以只填一个数,这时全部柱状图的宽度都是一致的)
color每个柱状图的颜色【它会根据你给的颜色循环使用,比如有4条柱状图,你只给了3种颜色:红黄蓝,那么最后图形的颜色就是:红黄蓝红
edgecolor边缘的颜色
label图例
lw边缘线的宽度

示例:

import matplotlib.pyplot as pltx = [1, 2, 3, 4]  # x轴刻度
height = [10, 20, 15, 18]  # y轴刻度(height)
color = ['red', 'yellow', 'blue', 'green']
x_label = ['class1', 'class2', 'class3', 'class4']
# 绘制x刻度标签
plt.xticks(x, x_label)
# 绘制柱状图
plt.bar(x, height, color=color, edgecolor='black')
plt.show()

输出:
请添加图片描述

修改一些样式,并只给定3种颜色:

import matplotlib.pyplot as pltx = [1, 2, 3, 4]  # x轴刻度
height = [10, 20, 15, 18]  # y轴刻度
color = ['red', 'yellow', 'blue']   # 只给定3种颜色
x_label = ['class1', 'class2', 'class3', 'class4']
# 绘制x刻度标签
plt.xticks(x, x_label)
# 绘制柱状图
plt.bar(x, height, alpha=0.8, width=0.2, color=color, edgecolor='black', lw=3)
plt.show()

输出:
请添加图片描述

:因为在语句中加入了 plt.xticks(x, x_label),所以x轴显示的不是数值,如果注释掉那句话,那么图形是这样的~
请添加图片描述

如果不是一次性传入数据,而是传一次数据,画一个柱状图,那么每个柱状图的颜色就会不一样。

示例:

import matplotlib.pyplot as pltx = [1, 2, 3, 4]  # x轴刻度
height = [10, 20, 15, 18]  # y轴刻度
color = ['red', 'yellow', 'blue']   # 只给定3种颜色
x_label = ['class1', 'class2', 'class3', 'class4']
# 绘制x刻度标签
# plt.xticks(x, x_label)
# 绘制柱状图
# plt.bar(x, height)
for xi, yi in zip(x, height):	# 一个一个柱状图画plt.bar(xi, yi)
plt.show()

输出:
请添加图片描述

3. 饼图

关键语句:matplotlib.pyplot.pie(sizes, ...)

一般会这么写:matplotlib.pyplot.pie(sizes, explode=explode, labels=labels, colors=colors, startangle=startangle, radius=radius),其中各属性含义如下:

属性含义
sizes饼图每个块的值
explode离开中心点的距离(注意:len(explode) == len(sizes)
labels饼图每个块要说明的文字
colors饼图每个块的颜色【它会根据你给的颜色循环使用,比如有4块饼图,你只给了3种颜色:红黄蓝,那么最后图形的颜色就是:红黄蓝红
autopct显示每块饼图划分的比例,并设置显示的小数位数
shadow(布尔值)是否显示阴影
startangle起始角度,默认是从x轴正方向逆时针开始画图
radius饼图的半径

示例:

import matplotlib.pyplot as pltsizes = [10, 20, 15, 18, 50]
explode = (0.1, 0.1, 0.1, 0.1, 0.1)
labels = ['class1', 'class2', 'class3', 'class4', 'class5']
colors = ['blue', 'red', 'green', 'yellow', 'pink', 'black']
plt.pie(sizes, explode=explode, labels=labels, colors=colors, autopct='%.1f%%', shadow=True, startangle=30, radius=0.8)
plt.show()

输出:
请添加图片描述

如果颜色没给够,那么图形就是这样的:

import matplotlib.pyplot as pltsizes = [10, 20, 15, 18, 50]
explode = (0, 0.1, 0, 0, 0)
labels = ['class1', 'class2', 'class3', 'class4', 'class5']
colors = ['blue', 'red', 'green']
plt.pie(sizes, explode=explode, labels=labels, colors=colors, startangle=30, radius=1.2)
plt.show()

输出:
请添加图片描述

:这样看上去就很难区分每部分了,甚至还会出现两个块颜色相同合并在了一起,所以颜色一定要给够!哪怕颜色给多了也不会报错,它只会按照给的颜色顺序赋值!!!

4. 直方图

关键语句:matplotlib.pyplot.hist(x, bins, ...)

一般会这么写:matplotlib.pyplot.hist(x, bins, density=density, histtype=histtype, align=align, color=color, label=label),其中各属性含义如下:

属性含义
x在x轴上的数值y(数据分布情况)
bins柱状图个数(数据区间)
density是否将直方图的频数转换成频率,默认值为:False(y轴为频数),可以改为 True(y轴为频率)
histtype直方图形状,可以选:barbarstackedstep(梯形)、stepfilled(对梯形内部进行填充),默认是bar
align不建议修改】控制柱状图水平分布,可以选:leftmid(默认值)、right
color直方图颜色
label标签,展示图标时使用

示例:

import matplotlib.pyplot as plt
import numpy as npx = np.random.randint(10, 51, 300)
bins = np.arange(10, 51, 2)     # 设置连续的边界值,即直方图的分布区间
# 绘制直方图
plt.hist(x, bins)
plt.show()

输出:
请添加图片描述

修改一些属性试试:

import matplotlib.pyplot as plt
import numpy as npx = np.random.randint(10, 51, 300)
bins = np.arange(10, 51, 2)     # 设置连续的边界值,即直方图的分布区间
# 绘制直方图
plt.hist(x, bins, density=True, histtype='step', align='left', color='green')
plt.show()

输出:
请添加图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/412310.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vue实现 marquee(走马灯)

样式 代码 <div class"marquee-prompt"><div class"list-prompt" refboxPrompt><span v-for"item in listPrompt" :title"item" class"prompt">{{item}}</span></div> </div>data() {…

[C++] opencv - copyTo函数介绍和使用案例

copyTo函数介绍 copyTo函数是OpenCV库中的一个成员函数&#xff0c;用于将一个Mat对象的内容复制到另一个Mat对象中。 函数原型&#xff1a; void cv::Mat::copyTo(OutputArray m) const;void cv::Mat::copyTo(OutputArray m, InputArray mask) const; 参数说明&#xff1a;…

C语言位域定义与使用

参考文章&#xff1a; 【C语言】详解位域定义与使用_c 语言定义位-CSDN博客 代码有修改&#xff0c;主要是变量初始化&#xff0c;原程序可能相应内存不能写。且第二个字节F不好区分各位。 #include <stdio.h>typedef struct {unsigned short b1 : 1;unsigned short b…

rust获取本地外网ip地址的方法

大家好&#xff0c;我是get_local_info作者带剑书生&#xff0c;这里用一篇文章讲解get_local_info的使用。 get_local_info是什么&#xff1f; get_local_info是一个获取linux系统信息的rust三方库&#xff0c;并提供一些常用功能&#xff0c;目前版本0.2.4。详细介绍地址&a…

LeetCode面试题02.07链表相交

力扣题目链接 思想&#xff08;数学&#xff09;&#xff1a;设链表A的长度为a&#xff0c;链表B的长度为b&#xff0c;A到交点D的距离为c&#xff0c;B到交点D的距离为d。显然可以得到两者相交链表的长度为&#xff1a;a - c b - d ,变换一下式子得到&#xff1a;a d b …

高效除甲醛 污染物 光触媒 5nm石墨烯二氧化钛粉CY05S

商品描述 技术指标&#xff1a; 项目 指标 型号 CY05S 粉末外观 蓝黑色粉体 粒径 <5nm 含量 99% 表面性质 亲水 使用方法&#xff1a; 把CY05S粉用蒸馏水&#xff0c;去离子水等&#xff0c;做成固含为1-2%的水溶液&#xff0c;喷涂于墙壁&#xff0c;天花板&a…

什么是身份治理和管理(IGA)

员工的数字身份在组织阶梯内移动时可能会发生变化&#xff0c;将对用户帐户应用与访问相关的修改的过程往往会变得费力且耗时&#xff0c;其强度与组织的人数成正比&#xff0c;为了简化用户身份管理&#xff0c;组织实施了身份治理和管理。 身份治理和管理&#xff08;IGA&am…

Java 方法中参数类型后写了三个点?什么意思?

1、...代表什么意思&#xff1f; 2、如何使用 3、注意事项 4、两个list&#xff0c;一个新的&#xff0c;一个旧的&#xff0c;旧列表中可能有新列表中存在的数据&#xff0c;也可能存在新列表中不存在的数据&#xff08;注&#xff1a;新旧列表中都不存在重复元素&#xff09;…

铝壳电阻有哪些特点和优势?

铝壳电阻是一种常见的电子元件&#xff0c;广泛应用于各种电子设备中。它具有许多特点和优势&#xff0c;使其在众多电阻类型中脱颖而出。以下是铝壳电阻的一些主要特点和优势&#xff1a; 散热性能好&#xff1a;铝壳电阻的外壳采用铝合金材料制成&#xff0c;具有良好的散热性…

什么是技术架构?架构和框架之间的区别是什么?怎样去做好架构设计?(一)

什么是技术架构?架构和框架之间的区别是什么?怎样去做好架构设计?(一)。 在软件行业,对于什么是架构,都有很多的争论,每个人都有自己的理解。在不同的书籍上, 不同的作者, 对于架构的定义也不统一, 角度不同, 定义不同。 一、架构是什么 Linux 有架构,MySQL 有架构,J…

YOLOv8在NX上的tensorrt的加速部署(60帧率)

所需环境 所有过程均可以参考本人所写的文章 (1)虚拟环境工具 MInforge3-Linux-aarch64 Jetson 平台都是RAM架构,平常的conda都是基于X86架构平台的。环境搭建参考文章 (2)YOLOv8_ros代码,采用自己创建的yolov_ros代码。yolov8_ros参考文章 (3)jetpack 环境(本篇文章…

如何运用工业智能网关将数据上传到设备数字化平台

在工业4.0和智能制造的时代背景下&#xff0c;设备数字化平台已经成为了企业实现高效、智能生产的关键。在这个过程中&#xff0c;工业智能网关发挥着至关重要的作用&#xff0c;它们作为连接设备与数字化平台的桥梁&#xff0c;是推动工业自动化的重要力量。 一、工业智能网关…