TCP高并发服务器简介(select、poll、epoll实现与区别)

select、poll、epoll三者的实现:

select实现TCP高并发服务器的流程:

  • 一、创建套接字(socket函数):
  • 二、填充服务器的网络信息结构体:
  • 三、套接字和服务器的网络信息结构体进行绑定(bind函数):
  • 四、套接字设置成被动监听(listen函数):
  • 五、创建要监听的文件描述符集合:
  • 使用select函数后,会将没有就绪的文件描述符在集合中去除,所以需要创建两个文件描述符集合,一个是母本read_fds,类似于常量,保持不变,而另一个作为副本read_fds_t,类似于变量,可以改变;
	fd_set read_fds;FD_ZERO(&read_fds);fd_set read_fds_t;FD_ZERO(&read_fds_t);
  • 六、把创建的套接字添加到要监视的集合中:
	FD_SET(sockfd,&read_fds);int fd_max = 0;fd_max = fd_max > sockfd ? fd_max : sockfd;
  • 七、设置系统时间结构体变量,用来指定超时的时间:
	struct timeval tm_out;
  • 八、等待文件描述符中的事件是否就绪,成功则返回就绪的文件描述符的个数(select函数):
  • select函数:
	#include <sys/select.h>int select(int nfds, fd_set *readfds, fd_set *writefds,fd_set *exceptfds, struct timeval *timeout);/*参数:nfds:		要监视的最大文件描述符+1readfds:	要监视的读文件描述符集合 不关心可以传NULLwritefds:	要监视的写文件描述符集合 不关心可以传NULLexceptfds:	要监视的异常文件描述符集合 不关心可以传NULLtimeout:	超时时间 如果设置成NULL 会一直阻塞 直到有文件描述符就绪返回值:成功 就绪的文件描述符的个数超时 0失败 -1 重置错误码*///struct timeval  可以指定超时时间//如果结构体的两个成员都为0 表示非阻塞struct timeval {long    tv_sec;         //秒 long    tv_usec;       //微秒};void FD_CLR(int fd, fd_set *set);	//将文件描述符在集合中删除int  FD_ISSET(int fd, fd_set *set);	//判断文件描述符是否还在集合中// 返回0 表示不在了 非0 表示在void FD_SET(int fd, fd_set *set);	//向集合中添加一个文件描述符void FD_ZERO(fd_set *set);			//清空集合
		if(-1 == (ret = select(fd_max + 1,&read_fds_t,NULL,NULL,&tm_out))){perror("select error");exit(-1);}else if(0 == ret){puts("timeout!!!!!");putchar('\n');continue;}
  • 九、遍历文件描述符集合,判断哪些文件描述符已经准备就绪:
		for(int i = 3; i < fd_max + 1 && 0 != ret; i++){...}
  • 十、判断文件描述符是否还在集合中,并且接收来自客户端的数据(recv函数)和给客户端发送应答消息(send函数):
            if(FD_ISSET(i,&read_fds_t)){//说明有新的客户端连接服务器if(i == sockfd){   if(-1 == (accept_fd = accept(sockfd,NULL,NULL))){perror("accept error");exit(-1);}printf("客户端[%d]连接到服务器\n",accept_fd);//将新连接的客户端的套接字添加到要监视的集合中FD_SET(accept_fd,&read_fds);fd_max = fd_max > accept_fd ? fd_max : accept_fd;}else //之前连接的客户端在向服务器发送信息{memset(buf,0,sizeof(buf));if(-1 == (nbytes = recv(i,buf,sizeof(buf),0))){perror("recv error");exit(-1);}else if(0 == nbytes){printf("客户端[%d]已断开连接\n",i);//将已断开连接客户端的套接字在文件描述符集合中剔除FD_CLR(i,&read_fds);//关闭套接字close(i);continue;}if(!strncmp(buf,"quit",4)){printf("客户端[%d]已退出\n",i);//将已断开连接客户端的套接字在文件描述符集合中剔除FD_CLR(i,&read_fds);//关闭套接字close(i);continue;}printf("客户端[%d]发来信息[%s]\n",i,buf);//组装应答消息strcat(buf,"----------k");//给客户端发送应答消息if(-1 == send(i,buf,sizeof(buf),0)){perror("send error");exit(-1);}}ret--; //减少遍历次数}
  • 十一、关闭套接字(close函数):

poll实现TCP高并发服务器的流程:

  • 一、创建套接字(socket函数):
  • 二、填充服务器的网络信息结构体:
  • 三、套接字和服务器的网络信息结构体进行绑定(bind函数):
  • 四、套接字设置成被动监听(listen函数):
  • 五、创建要监听的文件描述符集合并清空文件描述符集合:
	//创建要监听的文件描述符集合struct pollfd new_fds[2048] = {0};//清空文件描述符集合for(int i = 0; i < 2048; ++i){new_fds[i].fd = -1;}
  • 六、把创建的套接字添加到要监视的集合中:
	FD_SET(sockfd,&read_fds);int fd_max = 0;fd_max = fd_max > sockfd ? fd_max : sockfd;
  • 七、套接字添加到要监视的集合中,并且设置要监听的事件:
	//套接字添加到要监视的集合中new_fds[0].fd = sockfd;//设置要监听的事件new_fds[0].events |= POLLIN;
  • 八、记录文件描述符集合中最大的文件描述符,并且设置超时的时间:
	//记录文件描述符集合中最大的文件描述符int fd_max = 0;fd_max = fd_max > sockfd ? fd_max : sockfd;//设置超时的时间int tm_out = 10000;
  • 九、等待文件描述符中的事件是否就绪,成功则返回就绪的文件描述符的个数(poll函数):
  • poll实现TCP中型并发服务器select实现TCP小型并发服务器区别就是无需每次重置集合,并且可以设置要监视的最大文件描述符的个数,而select至多监视1024个文件描述符
  • poll函数:
	#include <poll.h>int poll(struct pollfd *fds, nfds_t nfds, int timeout);/*参数:fds:要监视的文件描述符的集合指向自定义的结构体数据nfds:fds中已经使用的项目的个数timeout:超时时间单位是毫秒  设置成10000 表示10s-1	永久阻塞0	非阻塞返回值:0		超时-1		出错 重置错误码正数	成功 返回的就绪的文件描述符的个数*/struct pollfd {int   fd;         /* 文件描述符 设置成-1 内核就不再监视这一位了*/short events;     /* 要监视的事件 */short revents;    /* 返回的事件 */};/*要监视的事件是用位运算或起来的要监视的事件放在events字段,而实际就绪的事件在revents字段返回POLLIN	读事件POLLOUT	写时间POLLERR	异常事件*/
		if(-1 == (ret = poll(new_fds,fd_max,tm_out))){perror("poll error");exit(-1);}else if(0 == ret){puts("timeout!!!!!");putchar('\n');continue;}
  • 十、遍历文件描述符集合,判断哪些文件描述符已经准备就绪:
		for(k = 0; k <= fd_max && ret != 0; ++k){   ...}
  • 十一、找到实际就绪的事件的文件描述符,并且接收来自客户端的数据(recv函数)和给客户端发送应答消息(send函数):
           //找到实际就绪的事件的文件描述符if(0 != (new_fds[k].revents & POLLIN)){//说明有新的客户端连接服务器if(new_fds[k].fd == sockfd){if(-1 == (accept_fd = accept(sockfd,NULL,NULL))){perror("accept error");exit(-1);}printf("客户端[%d]连接到服务器\n",accept_fd);//将新连接的客户端的套接字添加到要监视的集合中//遍历文件描述符集合,给新的文件描述符找一个位置for(j = 0; j < 2048; j++){if(-1 == new_fds[j].fd){new_fds[j].fd = accept_fd;new_fds[j].events |= POLLIN;fd_max = fd_max > accept_fd ? fd_max : accept_fd;break;}}if(2048 == j){//此时集合容量满了close(accept_fd);}}else //之前连接的客户端在向服务器发送信息{memset(buf,0,sizeof(buf));if(-1 == (nbytes = recv(new_fds[k].fd,buf,sizeof(buf),0))){perror("recv error");exit(-1);}else if(0 == nbytes){printf("客户端[%d]已断开连接\n",new_fds[k].fd);//将已断开连接客户端的套接字在文件描述符集合中剔除close(new_fds[k].fd);new_fds[k].fd = -1;continue;}if(!strncmp(buf,"quit",4)){printf("客户端[%d]已退出\n",new_fds[k].fd);//将已断开连接客户端的套接字在文件描述符集合中剔除close(new_fds[k].fd);new_fds[k].fd = -1;continue;}printf("客户端[%d]发来信息[%s]\n",new_fds[k].fd,buf);//组装应答消息strcat(buf,"----------k");//给客户端发送应答消息if(-1 == send(new_fds[k].fd,buf,sizeof(buf),0)){perror("send error");exit(-1);}}ret--; //减少遍历次数}
  • 十二、关闭套接字(close函数):

epoll实现TCP高并发服务器的流程:

  • 一、创建套接字(socket函数):
  • 通信域选择IPV4网络协议、套接字类型选择流式
	int sock_fd = socket(AF_INET,SOCK_STREAM,0); //通信域选择IPV4、套接字类型选择流式
  • 二、填充服务器和客户机的网络信息结构体:
  • 1.分别定义服务器网络信息结构体变量serveraddr和客户机网络信息结构体变量clientaddr
  • 2.分别求出服务器和客户机的网络信息结构体变量的内存空间大小,以作备用;
  • 3.网络信息结构体清0
  • 4.使用IPV4网络协议AF_INET
  • 5.在终端预留服务器端主机的IP地址inet_addr(argv[1])
  • 6.在终端预留服务器端网络字节序的端口号htons(atoi(argv[2]))
	struct sockaddr_in serveraddr; //定义服务器网络信息结构体变量struct sockaddr_in clientaddr;socklen_t serveraddr_len = sizeof(serveraddr);//求出服务器结构体变量的内存空间大小socklen_t clientaddr_len = sizeof(clientaddr);//求出客户机结构体变量的内存空间大小memset(&serveraddr,0,serveraddr_len); //服务器结构体清零memset(&clientaddr,0,clientaddr_len);//客户机结构体清零serveraddr.sin_family = AF_INET;  //使用IPV4网络协议serveraddr.sin_addr.s_addr = inet_addr(argv[1]);  //IP地址serveraddr.sin_port = htons(atoi(argv[2]));//网络字节序的端口号
  • 三、设置允许端口复用(setsockopt函数):
  • setsockopt函数:
  • 功能:设置套接字属性;
#include <sys/types.h>#include <sys/socket.h>int setsockopt(int sockfd, int level, int optname,const void *optval, socklen_t optlen);	/*参数:sockfd:套接字level:	选项的级别套接字API级别		SOL_SOCKETTCP级别			IPPROTO_TCPIP级别			IPPROTO_IPoptname:选项的名字套接字API级别SO_BROADCAST	是否允许发送广播SO_RCVBUF		接收缓冲区的大小SO_SNDBUF		发送缓冲区的大小SO_RCVTIMEO		接收超时时间参数使用的是 struct timeval 结构体如果超时了 函数调用会立即返回-1并将错误码置成 EAGAINSO_SNDTIMEO			发送超时时间SO_REUSEADDR		端口复用TCP级别TCP_NODELAY		使能/禁用Nagle算法IP级别IP_ADD_MEMBERSHIP	设置加入多播组optval:	选项的值没有特殊说明时 使用的都是int类型optlen:optval的大小返回值:成功 	0失败 	-1 	重置错误码*/
  • 特别注意:
  • 使用setsockopt设置允许端口复用时,其在代码的位置在填充网络信息结构体和bind之间;
	int reuse = 1;if(-1 == (setsockopt(sock_fd,SOL_SOCKET,SO_REUSEADDR,&reuse,sizeof(reuse)))){perror("setsockopt error");exit(-1);}
  • 四、套接字和服务器的网络信息结构体进行绑定(bind函数):

  • 五、套接字设置成被动监听(listen函数):

  • 六、创建红黑树(epoll_create函数):

	#include <sys/epoll.h>int epoll_create(int size);/*功能:创建epoll/创建epoll实例的描述符参数:size:参数已经被忽略了,只需要填写大于0的值即可返回值:epoll_create 调用成功时会返回一个非负整数epfd,表示新创建的 epoll 实例的文件描述符,如果调用失败则返回 -1,并设置 errno 变量以指示具体错误原因*/
	int epfd = epoll_create(1);if(-1 == epfd){perror("epoll_create error");exit(-1);}
  • 七、定义事件结构体变量和存放就绪事件描述符的数组:
  • 事件结构体epoll_event用于描述一个文件描述符上的事件;
			typedef union epoll_data {void        *ptr;int          fd;  uint32_t     u32;uint64_t     u64;} epoll_data_t;   struct epoll_event {uint32_t     events;      //EPOLLIN 读 / EPOLLOUT 写epoll_data_t data;        //存放用户的数据};    
struct epoll_event event;struct epoll_event events[N];
  • 八、将关心的文件描述符加入到红黑树(epoll_ctl函数):
  • 功能:epoll的控制操作或者用于向 epoll 实例中添加、修改、删除事件;
  • epoll_ctl函数:
	int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);/*参数:epfd:epoll的文件描述符op:控制方式EPOLL_CTL_ADD:添加EPOLL_CTL_MOD:修改EPOLL_CTL_DEL:删除fd:被操作的文件描述符event:(事件)结构体指针返回值:    成功返回0,失败返回-1 置位错误码*/
	//添加要检测事件的描述符event.events = EPOLLIN;event.data.fd = sock_fd;//将关心的文件描述符加入到红黑树if(-1 == (epoll_ctl(epfd,EPOLL_CTL_ADD,sock_fd,&event))){perror("epoll_ctl error");exit(-1);}
  • 九、等待文件描述符中的事件是否就绪,成功则返回就绪的文件描述符的个数(epoll_wait函数):
  • epoll_wait函数:
	int epoll_wait(int epfd, struct epoll_event *events,int maxevents, int timeout);/*参数:epfd:epoll的文件描述符events:准备好的事件的结构体地址maxevents:返回的最大的文件描述符的个数timeout:超时>0 :毫秒级别的超时时间=0 :立即返回=-1:不关心超时时间返回值:成功返回准备好的文件描述符的个数返回0代表超时时间到了失败返回-1置位错误码*/
		if(-1 == (ret = epoll_wait(epfd,events,N,-1))){perror("epoll_wait error");exit(-1);}	
  • 十、遍历就绪的文件描述符集,判断哪些文件描述符已经准备就绪:
		for(int i = 0; i < ret; ++i){...}
  • 十一、找到实际就绪的事件的文件描述符,并且接收来自客户端的数据(recv函数)和给客户端发送应答消息(send函数):
			if(events[i].data.fd == sock_fd){//获取连接成功后新的客户端new_fd = accept(sock_fd,(struct sockaddr *)&clientaddr,&clientaddr_len);if(-1 == new_fd){perror("accept error");exit(-1);}printf("文件描述符[%d]客户端[%s:%d]连接到了服务器\n",new_fd,inet_ntoa(clientaddr.sin_addr),ntohs(clientaddr.sin_port));//添加要检测的文件描述符event.events = EPOLLIN;event.data.fd = new_fd;if(-1 == (epoll_ctl(epfd,EPOLL_CTL_ADD,new_fd,&event))){perror("epoll_ctl error");exit(-1);}printf("文件描述符[%d]成功挂载在红黑树上\n",new_fd);}else{memset(buf,0,sizeof(buf));int old_fd = events[i].data.fd;if(-1 == (nbytes = recv(old_fd,buf,sizeof(buf),0))){perror("recv error");exit(-1);}else if(0 == nbytes){printf("文件描述符[%d]客户端断开了服务器\n",old_fd);//关闭对应的文件描述符close(old_fd);//剔除挂在树上对应的文件描述符epoll_ctl(epfd,EPOLL_CTL_DEL,old_fd,&event);}if(!strncmp(buf,"quit",4)){printf("文件描述符[%d]客户端退出了服务器\n",old_fd);//关闭对应的文件描述符close(old_fd);//剔除挂在树上对应的文件描述符epoll_ctl(epfd,EPOLL_CTL_DEL,old_fd,&event);}printf("文件描述符[%d]客户端发来数据[%s]\n",old_fd,buf);//组装应答消息strcat(buf,"-----k");//给客户端发送应答消息send(old_fd,buf,sizeof(buf),0); 
  • 十二、关闭套接字(close函数):

select、poll、epoll三者的区别:

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/413709.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2023年12月 C/C++(六级)真题解析#中国电子学会#全国青少年软件编程等级考试

C/C++编程(1~8级)全部真题・点这里 第1题:多项式相加 我们经常遇到两多项式相加的情况, 在这里, 我们就需要用程序来模拟实现把两个多项式相加到一起。 首先, 我们会有两个多项式,每个多项式是独立的一行, 每个多项式由系数、 幂数这样的多个整数对来表示。 如多项式 2…

半波整流电路原理详解+参数与计算公式

什么是半波整流电路&#xff1f; 半波整流电路的基本操作非常简单&#xff0c;输入信号通过二极管&#xff0c;由于只能通过一个方向的电流&#xff0c;二极管的整流作用&#xff0c;单个二极管只允许通过一半的波形。 下图说明了半波整流电路的基本原理。 半波整流电路工作图…

翻译: Streamlit从入门到精通六 实战缓存Cache请求数据

Streamlit从入门到精通 系列&#xff1a; 翻译: Streamlit从入门到精通 基础控件 一翻译: Streamlit从入门到精通 显示图表Graphs 地图Map 主题Themes 二翻译: Streamlit从入门到精通 构建一个机器学习应用程序 三翻译: Streamlit从入门到精通 部署一个机器学习应用程序 四翻译…

android 开发 W/TextToSpeech: speak failed: not bound to TTS engine

问题 笔者使用TTS(TextToSpeech)对于文本内容进行语音播报&#xff0c;控制台报错 android 开发 speak failed:not bound to TTS engine详细问题 笔者核心代码&#xff1a; import android.os.Bundle; import android.speech.tts.TextToSpeech; import android.speech.tts.…

机器学习--人工智能概述

人工智能概述 入门人工智能&#xff0c;了解人工智能是什么。为啥发展起来&#xff0c;用途是什么&#xff0c;是最重要也是最关键的事情。大致有以下思路。 人工智能发展历程机器学习定义以及应用场景监督学习&#xff0c;无监督学习监督学习中的分类、回归特点知道机器学习…

HubSpot:如何设计和执行客户旅程?

在当今数字化时代&#xff0c;企业成功的关键之一是建立并优化客户旅程。HubSpot作为一体化市场营销平台&#xff0c;通过巧妙设计和执行客户旅程&#xff0c;实现了个性化决策&#xff0c;关键节点的精准引导&#xff0c;为企业带来了数字化转型的引领力。 一、HubSpot是如何设…

yolo9000:Better, Faster, Stronger的目标检测网络

目录 一、回顾yolov1二、yolov2详细讲解2.1 Better部分创新点&#xff08;1&#xff09;Batch Normalization(批量归一化)&#xff08;2&#xff09;High Resolution Classifier---高分辨率分类器&#xff08;3&#xff09;Anchor Boxes---锚框&#xff08;4&#xff09;Dimens…

【Docker】实战多阶段构建 Laravel 镜像

作者主页&#xff1a; 正函数的个人主页 文章收录专栏&#xff1a; Docker 欢迎大家点赞 &#x1f44d; 收藏 ⭐ 加关注哦&#xff01; 本节适用于 PHP 开发者阅读。Laravel 基于 8.x 版本&#xff0c;各个版本的文件结构可能会有差异&#xff0c;请根据实际自行修改。 准备 新…

python算法与数据结构(搜索算法和拓扑排序算法)---深度优先搜索

课程目标 了解树/图的深度遍历&#xff0c;宽度遍历基本原理&#xff1b;会使用python语言编写深度遍历&#xff0c;广度遍历代码&#xff1b;掌握拓扑排序算法 搜索算法的意义和作用 搜索引擎 提到搜索两个子&#xff0c;大家都应该会想到搜索引擎&#xff0c;搜索引擎的基…

AI在检验数据方面的应用场景-九五小庞

AI在检验数据方面有广泛的应用前景&#xff0c;主要体现在以下几个方面&#xff1a; 自动化数据收集和分析&#xff1a;AI可以通过自动化技术&#xff0c;收集各种检验数据&#xff0c;如血液、尿液、生化指标等&#xff0c;并进行快速、准确的分析&#xff0c;提高检验效率。…

小白数学建模 Mathtype 7.7傻瓜式下载安装嵌入Word/WPS以及深度使用教程

数学建模Mathtype的下载安装嵌入Word/WPS以及深度使用教程 一 Mathtype 的下载安装1.1 安装前须知1.2 下载压缩包1.3 安装注册 二 嵌入Word/WPS2.1 嵌入Word2.1.1 加载项嵌入 Word2.1.2 宏录制嵌入 Word 2.2 嵌入 WPS2.2.1 加载项嵌入 WPS2.2.2 宏录制嵌入 WPS 2.3 嵌入时报错解…

人力资源智能化管理项目(day01:基础架构拆解)

学习源码可以看我的个人前端学习笔记 (github.com):qdxzw/frontlearningNotes 觉得有帮助的同学&#xff0c;可以点心心支持一下哈 一、基础架构拆解 1.拉取模板代码 git clone GitHub - PanJiaChen/vue-admin-template: a vue2.0 minimal admin template 项目名 2.core-js…