深度学习中Numpy的一些注意点(多维数组;数据类型转换、数组扁平化、np.where()、np.argmax()、图像拼接、生成同shape的图片)

文章目录

  • 1多维数组
      • 压缩维度
      • 扩充维度
  • 2numpy类型转换
      • 深度学习常见的float32类型。
  • 3数组扁平化
  • 4np.where()的用法
  • 5np.argmax()
  • 6图像拼接
  • 7生成同shape的图片,指定数据类型

1多维数组

a.shape=(3,2);既数组h=3,w=2
a.shape=(2,3,2);这里第一个2表示axis=0维度上的,三维数组中3,2)数组的个数,这里表示两个(3,2)数组。

压缩维度

  • 这里axis=0指代哪里是很重要的知识点。深度学习中经常压缩一个维度,axis=0。

numpy.squeeze()函数。

语法:numpy.squeeze(a,axis = None);作用是将shape维度为1的去掉,但通常我们会指定axis=0,去除batchsize的维度。

扩充维度

  • np.expand_dims(a, axis=1)将得到shape为(m, 1, n, c)的新数组,新数组中的元素与原数组a完全相同。
    np.expand_dims(a, axis=2)将得到shape为(m, n, 1, c)的新数组,新数组中的元素与原数组a完全相同。
    np.expand_dims(a, axis=3)将得到shape为(m, n, c, 1)的新数组,新数组中的元素与原数组a完全相同。
    ————————————————
    版权声明:本文为CSDN博主「dekiang」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
    原文链接:https://blog.csdn.net/weixin_41560402/article/details/105289015

在这里插入图片描述
在这里插入图片描述

2numpy类型转换

深度学习常见的float32类型。

  • 函数

a.dtype = ‘float32’

>>> a = np.random.random(4)
>>> a
array([ 0.0945377 ,  0.52199916,  0.62490646,  0.21260126])
>>> a.dtype
dtype('float64')
>>> a.shape
(4,)
>>> a.dtype = 'float32'
>>> a
array([  3.65532693e+20,   1.43907535e+00,  -3.31994873e-25,1.75549972e+00,  -2.75686653e+14,   1.78122652e+00,-1.03207532e-19,   1.58760118e+00], dtype=float32)
>>> a.shape
(8,)

3数组扁平化

假设C为三维数组
A = C.flatten()

4np.where()的用法

  • 一维数组,返回一个array
a = np.arange(8)
a
array([0, 1, 2, 3, 4, 5, 6, 7])np.where(a>4)
(array([5, 6, 7], dtype=int64),)
  • 二维数组,返回两个array。返回的第一个array表示行坐标,第二个array表示纵坐标,两者一一对应。
b = np.arange(4*5).reshape(4,5)b
array([[ 0,  1,  2,  3,  4],[ 5,  6,  7,  8,  9],[10, 11, 12, 13, 14],[15, 16, 17, 18, 19]])np.where(b>14)
(array([3, 3, 3, 3, 3], dtype=int64), array([0, 1, 2, 3, 4], dtype=int64))

5np.argmax()

作用:在axis方向上找最大值的坐标。

  • 语义分割中将多通道预测结果pred_mask转化为单通道mask
    np.argmax(pre_mask,axis=0)。即:在通道方向上找到哪个通道的置信度最大,比如1通道表示“汽车”,2“人”,3“猴子”,那么返回的索引值刚好对应label,将不同类别的像素点用不同颜色填充在原图上,这样就可以起到分割的效果。

6图像拼接

np.hstack h-horizontal 水平方向拼接

np.hstack(array1,array2)

np.vstack vertical 竖直方向拼接

np.vstack(array1,array2)

7生成同shape的图片,指定数据类型

# 以下是常用的两种类型
b = np.zeros(a.shape,dtype='float32')
dtype = np.int 
dtype = 'int8'

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/413754.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Docker容器添加映射端口

方式一 简单粗暴(需要等一段时间) 直接给现在容器停了(当然你要不想停也可以,只是打包会慢一点,当然我是没出意外,如果你怕出现特殊情况,那就先把容器停了),然后把这个容…

SQL Povit函数使用及实例

PIVOT函数常用于数据的行转列&#xff0c;同时也可以用此函数实现类似于Excel中的数据透视表的效果。 PIVOT函数 PIVOT 函数的基本语法如下&#xff1a; -- PIVOT 语法 SELECT <非透视的列>,[第一个透视的列] AS <列名称>,[第二个透视的列] AS <列名称>,.…

【springboot】配置文件入门

配置文件入门 配置文件最重要的目的&#xff1a;解决硬编码问题(代码写死) 我们接下来主要介绍两个方面&#xff1a;常见的配置项和配置文件的使用 SpringBoot 的配置文件,有三种格式 propertiesyamlyml(yaml的简写) 用的较多的是yml和properties文件 如果项目中,同时存在…

2017年认证杯SPSSPRO杯数学建模B题(第一阶段)岁月的印记全过程文档及程序

2017年认证杯SPSSPRO杯数学建模 跨年龄人脸识别模型的建立与分析 B题 岁月的印记 原题再现&#xff1a; 对同一个人来说&#xff0c;如果没有过改变面容的疾病、面部外伤或外科手术等经历&#xff0c;年轻和年老时的面容总有很大的相似性。人们在生活中也往往能够分辨出来两…

2023 IoTDB Summit:北京城建智控科技股份有限公司高级研发主管刘喆《IoTDB在城市轨道交通综合监控系统中的应用》...

12 月 3 日&#xff0c;2023 IoTDB 用户大会在北京成功举行&#xff0c;收获强烈反响。本次峰会汇集了超 20 位大咖嘉宾带来工业互联网行业、技术、应用方向的精彩议题&#xff0c;多位学术泰斗、企业代表、开发者&#xff0c;深度分享了工业物联网时序数据库 IoTDB 的技术创新…

HCIP-7

IPV6: 为什么使用IPV6&#xff1a; V4地址数量不够V4使用NAT&#xff0c;破坏了端到端原则 IPV6的优点&#xff1a; 全球单播地址聚合性强&#xff08;IANA组织进行合理的分配&#xff09;多宿主----一个接口可以配置N个地址--且这些地址为同一级别自动配置---1&#xff09;…

AGI即将出现,未来最重要的资源是算力和能源

丨划重点 ① 关于新模型的名字&#xff0c;奥特曼还没有明确的想法&#xff0c;但他称不喜欢像“iPhone 27”这样的命名方式。 ② 奥特曼认为AGI将在不久的将来出现&#xff0c;但对社会和工作的影响程度可能远低于预期。 ③ 奥特曼表示&#xff0c;尽管AI的潜力超过预期&#…

CS8370错误,这是由于使用了C# 7.3中不支持的功能

目录 背景: 第一种方法: 第二种办法: 背景: 在敲代码的时候&#xff0c;程序提示报错消息提示:CS8370错误&#xff0c;那么这是什么原因导致的&#xff0c;这是由于使用了C# 7.3中不支持的功能&#xff0c;不支持该功能&#xff0c;那就是版本太低我们就需要升级更高的版本&…

自动驾驶概述

自动驾驶技术主要解决的问题 无人驾驶分级 L1:巡航定速(ACC),巡航装置可以纵向控制车辆,可以加速减速 L2:车道保持辅助,系统可以纵向控制也可以横向控制汽车,但车是辅助,人才是主导。 L2.5:可以提供简单路况下的变道能力,比如特斯拉。 L3:L2的基础上提供变道能力,…

Apache安全及优化

配置第一台虚拟机 VM1网卡 yum仓库 挂载磁盘 上传3个软件包到/目录 到/目录下进行解压缩 tar xf apr-1.6.2.tar.gz tar xf apr-util-1.6.0.tar.gz tar -xjf httpd-2.4.29.tar.bz2 mv apr-1.6.2 httpd-2.4.29/srclib/apr mv apr-util-1.6…

电阻表示方法和电路应用

电阻 电阻的表示方法 直标法 直标法是将电阻器的类别及主要技术参数的数值直接标注在电阻器表面上 通常用3位阿拉伯数字来标注片状电阻的阻值&#xff0c;其中第1位数代表阻值的第1位有效数&#xff1b;第2位数代表阻值的第二位有效数字&#xff1b;第3位数代表阻值倍率&…

Stability AI发布全新代码模型Stable Code 3B

Stable Code 3B: Coding on the Edge 要点&#xff1a; Stable Code 3B 是一个包含 30 亿个参数的大型语言模型 (LLM)&#xff0c;可实现准确且响应灵敏的代码补全&#xff0c;其水平与大 2.5 倍的 CodeLLaMA 7b 等模型相当。即使在 MacBook Air 等普通笔记本电脑上没有 GPU&…