基于YOLOv8深度学习的葡萄簇目标检测系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】
3.【手势识别系统开发】4.【人脸面部活体检测系统开发】
5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】
7.【YOLOv8多目标识别与自动标注软件开发】8.【基于YOLOv8深度学习的行人跌倒检测系统】
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统】
11.【基于YOLOv8深度学习的安全帽目标检测系统】12.【基于YOLOv8深度学习的120种犬类检测与识别系统】
13.【基于YOLOv8深度学习的路面坑洞检测系统】14.【基于YOLOv8深度学习的火焰烟雾检测系统】
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统】16.【基于YOLOv8深度学习的舰船目标分类检测系统】
17.【基于YOLOv8深度学习的西红柿成熟度检测系统】18.【基于YOLOv8深度学习的血细胞检测与计数系统】
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统】20.【基于YOLOv8深度学习的水稻害虫检测与识别系统】
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统】22.【基于YOLOv8深度学习的路面标志线检测与识别系统】
22.【基于YOLOv8深度学习的智能小麦害虫检测识别系统】23.【基于YOLOv8深度学习的智能玉米害虫检测识别系统】
24.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统】25.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统】
26.【基于YOLOv8深度学习的人脸面部表情识别系统】27.【基于YOLOv8深度学习的苹果叶片病害智能诊断系统】
28.【基于YOLOv8深度学习的智能肺炎诊断系统】

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】

《------正文------》

基本功能演示

在这里插入图片描述

摘要:葡萄簇目标检测系统能够自动检测葡萄园中的葡萄簇对象,这对于精确农业和数据驱动的作物管理是一大助力,同时有助于实现可持续发展的农业实践。本文基于YOLOv8深度学习框架,训练了一个进行葡萄簇的目标检测模型,可检测葡萄园中的葡萄簇对象。并基于此模型开发了一款带UI界面的葡萄簇目标检测系统,可用于实时检测场景中的葡萄簇,也更方便进行功能的展示。该系统是基于pythonPyQT5开发的,支持图片视频以及摄像头进行目标检测,并保存检测结果。本文提供了完整的Python代码和使用教程,给感兴趣的小伙伴参考学习,完整的代码资源文件获取方式见文末

文章目录

  • 基本功能演示
  • 前言
  • 一、软件核心功能介绍及效果演示
    • 软件主要功能
    • (1)图片检测演示
    • (2)视频检测演示
    • (3)摄像头检测演示
    • (4)保存图片与视频检测结果
  • 二、模型的训练、评估与推理
    • 1.YOLOv8的基本原理
    • 2. 数据集准备与训练
    • 3. 训练结果评估
    • 4. 检测结果识别
  • 【获取方式】
  • 结束语

点击跳转至文末《完整相关文件及源码》获取


前言

葡萄簇目标检测系统能够自动检测葡萄园中的葡萄簇对象,这一技术的开发对现代农业尤为重要。它不仅能够提高葡萄园的管理效率,而且还可以提升果实质量、优化收成时机和方法,进而提高整体产量和降低生产成本。系统对于精确农业和数据驱动的作物管理是一大助力,同时有助于实现可持续发展的农业实践。

葡萄簇目标检测系统的应用场景有很多,例如:
产量预估:通过检测葡萄簇,系统可以帮助估计葡萄园的整体产量,从而做出更好的市场策略和资源分配。
病虫害检测:自动识别可能暗示病害或虫害的迹象,为防治措施提供实时数据支持。
自动化收获:在安装于自动化采摘机器或无人机上时,可以精确识别成熟葡萄簇,辅助或完全实现收获自动化。
成熟度评估:定期监测葡萄簇的生长状态,确定最佳采摘时机,以确保果实的品质。
精细化管理:详细记录葡萄生长情况,帮助农场主做出基于数据的灌溉、施肥等决策。
科研与教学:为葡萄生长研究提供照片资料,支持农业科研和教育工作。
简单总结,葡萄簇目标检测系统的引入对于现代葡萄栽培具有显著意义,它不仅可以优化生产管理,降低人力成本,还能够通过精确监控提高葡萄产品的市场竞争力。此系统代表了信息技术在农业领域应用的积极趋势,有助于推动农业自动化和智能化的发展。

博主通过搜集实际葡萄园场景中的葡萄簇相关数据图片,根据YOLOv8的目标检测技术,基于python与Pyqt5开发了一款界面简洁的葡萄簇目标检测系统,可支持图片、视频以及摄像头检测,同时可以将图片或者视频检测结果进行保存

软件初始界面如下图所示:
在这里插入图片描述

检测结果界面如下:
在这里插入图片描述

一、软件核心功能介绍及效果演示

软件主要功能

1. 可对实际图像中的葡萄簇对象进行检测;
2. 支持图片、视频及摄像头进行检测,同时支持图片的批量检测
3. 界面可实时显示目标位置目标总数置信度用时等信息;
4. 支持图片或者视频检测结果保存

(1)图片检测演示

点击图片图标,选择需要检测的图片,或者点击文件夹图标,选择需要批量检测图片所在的文件夹,操作演示如下:
点击目标下拉框后,可以选定指定目标的结果信息进行显示。 点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。
注:1.右侧目标位置默认显示置信度最大一个目标位置。所有检测结果均在左下方表格中显示。
单个图片检测操作如下:
在这里插入图片描述

批量图片检测操作如下:
在这里插入图片描述

(2)视频检测演示

点击视频图标,打开选择需要检测的视频,就会自动显示检测结果。点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。
在这里插入图片描述

(3)摄像头检测演示

点击摄像头图标,可以打开摄像头,可以实时进行检测,再次点击摄像头图标,可关闭摄像头。

在这里插入图片描述

(4)保存图片与视频检测结果

点击保存按钮后,会将当前选择的图片【含批量图片】或者视频的检测结果进行保存。检测的图片与视频结果会存储在save_data目录下。
在这里插入图片描述
在这里插入图片描述

二、模型的训练、评估与推理

1.YOLOv8的基本原理

YOLOv8是一种前沿的目标检测技术,它基于先前YOLO版本在目标检测任务上的成功,进一步提升了性能和灵活性。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行
其主要网络结构如下:
在这里插入图片描述

2. 数据集准备与训练

本文使用的数据集实际葡萄园场景中拍摄的图片,并使用Labelimg标注工具对每张图片中的目标边框(Bounding Box)及类别进行标注。部分图像及标注如下图所示。:
在这里插入图片描述
在这里插入图片描述

图片数据的存放格式如下,在项目目录中新建datasets目录,同时将检测的图片分为训练集与验证集放入GrapeData目录下。
在这里插入图片描述
同时我们需要新建一个data.yaml文件,用于存储训练数据的路径及模型需要进行检测的类别。YOLOv8在进行模型训练时,会读取该文件的信息,用于进行模型的训练与验证。data.yaml的具体内容如下:

train: E:\MyCVProgram\GrapeDetection\datasets\GrapeData\train  # train images (relative to 'path') 128 images
val: E:\MyCVProgram\GrapeDetection\datasets\GrapeData\val  # val images (relative to 'path') 128 images# number of classes
nc: 1# Classes
names: ['Grape']

注:train与val后面表示需要训练图片的路径,建议直接写自己文件的绝对路径。
数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:

#coding:utf-8
from ultralytics import YOLO# 加载预训练模型
model = YOLO("yolov8n.pt")
# Use the model
if __name__ == '__main__':# Use the modelresults = model.train(data='datasets/GrapeData/data.yaml', epochs=300, batch=4)  # 训练模型# 将模型转为onnx格式# success = model.export(format='onnx')

3. 训练结果评估

在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练时主要包含三个方面的损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss),在训练结束后,可以在runs/目录下找到训练过程及结果文件,如下所示:
在这里插入图片描述

各损失函数作用说明:
定位损失box_loss:预测框与标定框之间的误差(GIoU),越小定位得越准;
分类损失cls_loss:计算锚框与对应的标定分类是否正确,越小分类得越准;
动态特征损失(dfl_loss):DFLLoss是一种用于回归预测框与目标框之间距离的损失函数。在计算损失时,目标框需要缩放到特征图尺度,即除以相应的stride,并与预测的边界框计算Ciou Loss,同时与预测的anchors中心点到各边的距离计算回归DFLLoss。这个过程是YOLOv8训练流程中的一部分,通过计算DFLLoss可以更准确地调整预测框的位置,提高目标检测的准确性。
本文训练结果如下:
在这里插入图片描述

我们通常用PR曲线来体现精确率和召回率的关系,本文训练结果的PR曲线如下。mAP表示Precision和Recall作为两轴作图后围成的面积,m表示平均,@后面的数表示判定iou为正负样本的阈值。mAP@.5:表示阈值大于0.5的平均mAP,可以看到本文模型4目标检测的mAP@0.5值为0.84,结果还是很不错的。
在这里插入图片描述

4. 检测结果识别

模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt文件,在runs/trian/weights目录下。我们可以使用该文件进行后续的推理检测。
图片检测代码如下:

#coding:utf-8
from ultralytics import YOLO
import cv2# 所需加载的模型目录
path = 'models/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/IMG_0209_0.jpg"# 加载预训练模型
# conf	0.25	object confidence threshold for detection
# iou	0.7	intersection over union (IoU) threshold for NMS
model = YOLO(path, task='detect')
# model = YOLO(path, task='detect',conf=0.5)# 检测图片
results = model(img_path)
res = results[0].plot()
res = cv2.resize(res,dsize=None,fx=0.5,fy=0.5,interpolation=cv2.INTER_LINEAR)
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)

执行上述代码后,会将执行的结果直接标注在图片上,结果如下:
在这里插入图片描述

以上便是关于此款葡萄簇目标检测系统的原理与代码介绍。基于此模型,博主用pythonPyqt5开发了一个带界面的软件系统,即文中第二部分的演示内容,能够很好的支持图片、视频及摄像头进行检测,同时支持检测结果的保存

关于该系统涉及到的完整源码、UI界面代码、数据集、训练代码、测试图片视频等相关文件,均已打包上传,感兴趣的小伙伴可以通过下载链接自行获取。


【获取方式】

关注下方名片G-Z-H:【阿旭算法与机器学习】,并发送【源码】即可获取下载方式

本文涉及到的完整全部程序文件:包括python源码、数据集、训练代码、UI文件、测试图片视频等(见下图),获取方式见文末:
在这里插入图片描述

注意:该代码基于Python3.9开发,运行界面的主程序为MainProgram.py,其他测试脚本说明见上图。为确保程序顺利运行,请按照程序运行说明文档txt配置软件运行所需环境。

关注下方名片GZH:【阿旭算法与机器学习】,并发送【源码】即可获取下载方式


结束语

以上便是博主开发的基于YOLOv8深度学习的葡萄簇目标检测系统的全部内容,由于博主能力有限,难免有疏漏之处,希望小伙伴能批评指正。
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

觉得不错的小伙伴,感谢点赞、关注加收藏哦!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/414378.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【遥感专题系列】影像信息提取之——面向对象的影像分类技术

“同物异谱,同谱异物”会对影像分类产生的影响,加上高分辨率影像的光谱信息不是很丰富,还有经常伴有光谱相互影响的现象,这对基于像素的分类方法提出了一种挑战,面向对象的影像分类技术可以一定程度减少上述影响。 本…

【Docker】contos7安装 Nacos容器部署单个部署集群

🎉🎉欢迎来到我的CSDN主页!🎉🎉 🏅我是平顶山大师,一个在CSDN分享笔记的博主。📚📚 🌟推荐给大家我的博客专栏《Docker】contos7安装 Nacos容器部署单个&…

旅游项目day03

1. 前端整合后端发短信接口 2. 注册功能 后端提供注册接口,接受前端传入的参数,创建新的用户对象,保存到数据库。 接口设计: 实现步骤: 手机号码唯一性校验(后端一定要再次校验手机号唯一性&#xff09…

vue2 如何配置路由详解。

首先我们要安装一下vue-router,命令为 yarn add vue-router3.5.3 或者使用 npm 命令。 有人在配置路由的时候可能会报以下错误:如何解决呢,就是版本号太高了(4版本),用以上的命令就可以(yarn a…

Git一台电脑 配置多个账号

Git一台电脑 配置多个账号 Git一台电脑 配置多个账号 常用的Git版本管理有 gitee github gitlab codeup ,每个都有独立账号,经常需要在一个电脑上向多个代码仓提交后者更新代码,本文以ssh 方式为例配置 1 对应账号 公私钥生成 建议&#…

仓储的未来:为叉车配备智能设备

近年来,数字化和自动化极大地重塑了仓储行业。叉车是仓库的主力,正在配备智能设备以简化操作。 点击下载Dynamsoft最新版https://www.evget.com/product/3691/download 智能叉车的序列化艺术 序列化是为每个商品或托盘分配唯一标识符(通常采…

openGauss:准备知识1【IP地址/SSH协议/PuTTY安装和使用】

最近研究在openEuler 22.03 LTS上使用openGauss数据库。如果想要远端访问服务器,那么就先要了解IP地址、SSH协议等内容。 IP代表“Internet Protocol”,是一种网络协议,它定义了计算机在网络上的地址和数据传输方式。简言之,可以…

德施曼智能锁×去哪儿跨界联名,送你一场说走就走的新年旅行~

2024年农历新年即将来临,智能锁行业领军企业德施曼携手中国领先在线旅游平台去哪儿,紧扣“旅游过年”的新年趋势,推出“新年去哪儿,德施曼替你看家”跨界联名活动,为广大用户带来一场说走就走的旅行。 德施曼X去哪儿 …

GoZero微服务个人探究(四)启动rpc微服务报错panic: context deadline exceeded

这里的原因有很多: 网络不好,etcd服务没有起起来,如果etcd开起了tls加密,微服务没有配置证书等原因 主要讲的是为微服务配置好认证证书,因为其他两个容易解决 在对应服务的xxx.yaml内,补充etcd认证文件相…

VMware安装Linux-Redhat7.9 详细步骤

目录 一、安装准备二、安装步骤 一、安装准备 Redhat 7.9 镜像下载 VMware安装步骤可查看文章:https://blog.csdn.net/a2279338659/article/details/126346345 可去官网下载,或者加群下载镜像资源。 二、安装步骤 创建新的虚拟机: 我这边…

MAX-4/11/03/016/08/1/1/00元件温度性能对模块温度特性的影响

MAX-4/11/03/016/08/1/1/00元件温度性能对模块温度特性的影响 DC/DC电源模块高温失效原因分析 "引言   DC/DC电源模块(以下简称模块),是一种运用功率半导体 ... 的一款高性能DC/DC电源模块。与tnterlmint的MHF2815S相比&#xff0c…

Unity | 渡鸦避难所-7 | 攻击碰撞检测

1 前言 英雄的宝剑并非只是装饰物,利剑出鞘时可以对怪物造成伤害。同样,怪物挥出铁拳时也会对英雄造成伤害。当然,都有同样的前提:在武器碰到对方的情况下,才会造成伤害。利用物理引擎,可以轻松的实现碰撞…