NVIDIA 大模型 RAG 分享笔记

文章目录

  • 大语言模型在垂直领域落地的三个挑战:
  • 什么是 RAG以及为什么能解决大预言模型所带来的的这三个问题
  • RAG 不是一项技术而是整体的 Pipeline
    • 非参数化 :数据库部分
      • 加载到数据库中
      • 检索阶段
    • 提升检索效率的技术
      • 检索前:对query做处理
        • use query routing
        • Query transformations
        • Sentence-window retrieval & Auto-merge retriveal
      • 检索中
      • 检索后
        • Re-ranker
        • Meta-data filtering
        • Prompt Compression
      • 总结
    • 参数化的部分:模型的选择和部署
    • 评价
  • NVIDIA 提供的 RAG 端到端解决方案
    • embedding model
    • RAPIDS RAFT 加强的index
    • 大语言基础模型
    • 部署框架 TensorRT-LLM
    • NeMo Guardrails
    • Evaluating RAG Pipeline
    • RAG Pipeline Samples in NVIDIA
  • 借助于RAG-Copilot 如何提升工作效率
    • RAG 技术和微调技术的比较
    • 高级 RAG
      • NVIDIA 的加持

大语言模型在垂直领域落地的三个挑战:

  • 数据是有一定范围的。大量的数据在一定的时间内训练完成的。确定数据对于基础模型是有一定的范围的。对专业领域,垂直领域的应用场景来说,知识是不够全面的。是缺乏专业的知识的。
  • 数据有时间限制的。知识更新迭代快,给的回答可能过时
  • 幻觉

RAG 是一种解决的 pipeline.

在这里插入图片描述

什么是 RAG以及为什么能解决大预言模型所带来的的这三个问题

RAG对于大语言模型来说类比于开卷考试。

三个步骤

  • Retriveal
  • Augmentation: 增强的 prompt
    • 增强的上下文是有理有据的,减少幻觉
  • 参数化的知识,结合传入的数据,生成

技术

  • 非参数化的技术:数据库的部分
  • 预训练的参数化部分
    • 基础大语言模型的选择
    • 部署平台的选择,提升用户的体验

RAG 不是一项技术而是整体的 Pipeline

非参数化 :数据库部分

在这里插入图片描述

加载到数据库中

准备好数据,需要放进数据库中的数据类型
在这里插入图片描述

  • Documents Loader

    • langchain 或其他工具提供的加载方式进行数据加载
    • 数据本身可能涉及到一些冗余重复的文字,比如统一的公司后缀:这是一个关于。。。之类的文档。。。声明之类,在放进数据库之前,应该统一进行清洗处理。
      在这里插入图片描述
    • Chunk
      因为大语言模型对于输入的窗口是有一定的限制的,不能太大。这取决于基础模型在本身的训练过程中或者它的 attention 机制。那么我们在分 chunk 的时候可以有不同的选择。可以用固定大小的chunk,也可以用动态的,动态的是指用一些标志来作为一个分割,比如一个段落按回车符分或者一个完整的句子按句号分,就是尽可能划分为有意义的分块。
      针对纯文本,可以增加重叠部分。好处是有一个承上启下的作用,给到模型的时候会附带逻辑。
      在这里插入图片描述
  • Embedding Model

    • 一般是一个 encoder model.
    • 可能需要加prompt,才能达到比较好的检索效果
      在这里插入图片描述
  • Vector Database

    • 是否支持分布式部署
    • 是否支持需要的索引方式等
      在这里插入图片描述

检索阶段

应用上线之后,真的来了问题,需要把问题转换成向量,去向量空间里面去做一个近似性搜索,找到相关文档进行返回。

  • Database Search
    • precision:检出的文档是否是问题相关的上下文
    • recall: 和问题相关的文档是否全部检出,只返回一两个可能无法提升rag整体效果
      所以如何提高 similarity search 返回整体的精度也是非常重要的一点。
      在这里插入图片描述
      如何采用技术来提升相似性的精确度和准确度。

一个好的向量数据会把含义相近的上下文放在一起,区分单纯的关键词匹配。
索引一般采用的是 ANN 算法。

在这里插入图片描述

提升检索效率的技术

分为检索前、检索中、检索后三个阶段,看可以采用的技术。
在这里插入图片描述

检索前:对query做处理

use query routing

借助 LLM 的能力,可以理解成有一个小小的 LLM agent,拿到用户的问题之后,会去看问题属于哪一类。
比如会在数据库中建立两类索引,一类是和总结相关的,另外的索引就是常规的明细介绍。如果发现问题是和总结相关的,小agent就应该说你应该去 summay index 里面去做检索。
在这里插入图片描述

Query transformations

借助 LLM 的技术,对 query 做一个转换

  • 重写问题。问题问得不好,LLM 重写一个问题再去向量数据库中检索
  • HyDE, 先不用 RAG 这样的增强方式,就让这个问题直接到大语言模型产生一个答案。然后把问题和答案同时送到向量数据库中去做检索
  • 将复杂问题做拆解,拆解之后再进行检索
Sentence-window retrieval & Auto-merge retriveal

chunk 如果太大, 向量表示可能隐藏掉相关文本的语义。
使用从小到大的技术。

  • 使用小的chunk 去生成 embedding vector。
    但是因为chunk比较小,给到大语言模型的上下文是不足够的,让后就使用 “大”(to big)
    • Sentence-window retrieval : 把每个句子都去生成一个多维向量,检索的时候是精确检索到了句子,为了提高上下文的丰富性,可以把前5个句子,后5个句子同时送到大语言模型中做一个上下文的增强。
    • Auto-merge retriveal:采用树型的存储结构,比如知道一个段落产生了这个 vector, 知道段落属于哪个小节,属于哪章节。检索完小的段落之后,可以找到它的父节点,可以把小节的内容,更丰富的内容送进大模型中去做生成。这样就能够保证检索的精度,同时保证上下文够丰富,能够生成符合我们预期的内容。
      在这里插入图片描述

检索中

hybrid: 混合的检索方式 keyword+embedddings.
把 keyword 加到 query 里面,做一个精确的检索?具体做法?
在这里插入图片描述

检索后

Re-ranker

这个是比较重要的,也是建议刚开始建立原型的话也可以去采用的一个技术.

相似性搜索后,和相关不是百分百对应的。检索出来的上下文不一定是相关的。可以再用一个另外一个小型的模型,输入是用户的问题以及检索出来的文档,去看问题和文档的相关性。
再去做一个排序,做一个二级检索。二级检索的时候就要对前面的检索进行一定的调整。(应该只是对第一轮检索做了一个相关性过滤)
第一轮,检索100个或30个,re-ranker 后用 top5, 放进大语言模型做生成
在这里插入图片描述

Meta-data filtering

存储时可以把作者存入
检索时可以增加作者这个元数据去做二次过滤,去提升检索效果

在这里插入图片描述

Prompt Compression

大语言模型有 window 限制, 找到的 chunk,尽管用了一些方法,但是还是存在一些噪声,和query不太相关,但是却不太能把它删除。
再借助另一个语言模型,把增强型的prompt再进行一个压缩,把有用的信息增强,把不相关的信息减弱。

在这里插入图片描述

总结

在这里插入图片描述

参数化的部分:模型的选择和部署

在这里插入图片描述
模型:适合场景的模型,比如代码类,问答类会有对应的模型
部署:低延迟、高吞吐率。是否支撑换模型。

评价

在产品阶段不是一蹴而就,需要多次迭代。需要看实践是否满足需求。如何评价整个 RAG 流程的工作效率是非常重要的一环。

  • RAGAS
  • truelens
  • standford ARES

不同的评估标准的指标都不一样,对标准的计算公式也不太一样,难度也不同,按需选择。
在这里插入图片描述

NVIDIA 提供的 RAG 端到端解决方案

方便上手,建立原型

embedding model

nvidia text qa embedding model
在这里插入图片描述

RAPIDS RAFT 加强的index

提升检索速度
GPU 加速的 ANN 索引
在这里插入图片描述
在这里插入图片描述

大语言基础模型

在这里插入图片描述

部署框架 TensorRT-LLM

在这里插入图片描述

NeMo Guardrails

为输出提供围栏?具体没说,已经开源,可以查看文档。
已经开源,可以查看文档

在这里插入图片描述

Evaluating RAG Pipeline

RAGAS: Evaluation framework for your Retrieval Augmented Generation (RAG) pipelines

RAG Pipeline Samples in NVIDIA

NVIDIA/GenerativeAIExamples

借助于RAG-Copilot 如何提升工作效率

Example: ChipNemo
一个借助于RAG制造芯片的例子。里面是结合了RAG和微调两种技术。
Custom tokenizers| Domain-adaptive continued pretraining |
Supervised fine-tuning (SFT) with domain-specific instructions | domain-adapted retrieval models.

RAG 技术和微调技术的比较

在这里插入图片描述

高级 RAG

在这里插入图片描述

NVIDIA 的加持

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/414463.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

开源项目汇总:机器学习前沿探索 | 开源专题 No.60

facebookresearch/xformers Stars: 6.0k License: NOASSERTION xFormers 是一个加速 Transformer 研究的工具包,主要功能如下: 可自定义构建模块:无需样板代码即可使用的独立/可定制化构建模块。这些组件与领域无关,被视觉、NLP…

MS2358——96KHz、24bit 音频 ADC

产品简述 MS2358 是带有采样速率 8kHz-96kHz 的立体声音频模数 转换器,适合于面向消费者的专业音频系统。 MS2358 通过使用增强型双位 Δ - ∑ 技术来实现其高精度 的特点。 MS2358 支持单端的模拟输入,所以不需要外部器 件,非常适…

基于docker创建nginx容器

docker一键安装可以参考我这个博客:一键安装docker 1.创建基础容器 docker run -p280:280 --name nginx -d nginx创建挂载到容器的宿主机文件夹 mkdir -p /home/000nginx-ebrms-ftp/html mkdir -p /home/000nginx-ebrms-ftp/logs mkdir -p /home/000nginx-ebrms-f…

C++ Linux动态库的编译和调用

一、C动态库编译 采用g编译C动态库,命令如下: g -fPIC -shared -o 动态库名 cpp文件名1.1 关于fPIC选项 首先了解动态库的载入时重定位。 一般linux的可执行文件都是elf格式(一种二进制文件格式),在可执行文件的头部包…

C++进阶(五)二叉搜索树

📘北尘_:个人主页 🌎个人专栏:《Linux操作系统》《经典算法试题 》《C》 《数据结构与算法》 ☀️走在路上,不忘来时的初心 文章目录 一、二叉搜索树概念二、二叉搜索树操作三、二叉搜索树的实现四、二叉搜索树的应用五、二叉搜索…

Maxwell介绍

一、介绍 介绍:它读取MySQL binlog并将数据更改作为JSON写入Kafka、Kinesis和其他流媒体平台(目前支持:kafka、RabbitMQ、Redis、file、Kinesis、Nats、Google Cloud Pub/Sub、Google Cloud Bigquery、SNS) 版本:从v1.…

electron-builder打包过程中报错的处理

electron在使用electron-builder打包过程中需要用到四个包,但是由于内网的网络限制,下载不下来,会导致报错。下面即为具体的包: 通过镜像 https://registry.npmmirror.com/ https://registry.npmmirror.com/ 去下载相关的资…

智慧公厕:利用物联网、云计算和人工智能实现智能化管理与控制

智慧公厕是指利用传感感知、物联网、互联网、大数据、云计算、自动化控制等先进技术,实现对公厕的智能化管理与控制。通过以上高精尖的信息技术手段,可以实时监测厕所内人体活动状态、人体存在状态、空气质量情况、环境变化情况、设施设备运行状态等信息…

CentOS 7上安装Anaconda 详细教程

目录 1. 下载Anaconda安装脚本2. 校验数据完整性(可选)3. 运行安装脚本4. 遵循安装指南5. 选择安装位置6. 初始化Anaconda7. 激活安装8. 测试安装9. 更新Anaconda10. 使用Anaconda 1. 下载Anaconda安装脚本 首先需要从Anaconda的官方网站下载最新的Anac…

模型Model:字符串列表模型QStringListModel

一、QStringListModel (1)功能:处理字符串列表的数据模型,可作为QListView的数据模型,在界面上显示和编辑字符串列表。 二、QStringListModel 类中的函数 1)、 QStringListModel(QObject *parent Q_NULLPTR) //构造函…

基于android的违章处理APP 前后端服务 -毕业设计

基于android的违章处理APP 该项目是基于android版本的违章处理APP,系统包含前端android服务和后端web服务,内容和技术都是目前比较流行的架构。 技术介绍 前端android端: jdk17 gradle8.0 android studio 采用2023版本 后端web端&#xff…

基于局部信息提取的人脸标志检测算法matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1 人脸检测 4.2 局部区域选择 4.3 特征提取 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3.部分核心程序 .........................................…