Apache Zeppelin结合Apache Airflow使用1
文章目录
- Apache Zeppelin结合Apache Airflow使用1
- 前言
- 一、安装Airflow
- 二、使用步骤
- 1.目标
- 2.编写DAG
- 2.加载、执行DAG
- 总结
前言
之前学了Zeppelin的使用,今天开始结合Airflow串任务。
Apache Airflow和Apache Zeppelin是两个不同的工具,各自用于不同的目的。Airflow用于编排和调度工作流,而Zeppelin是一个交互式数据分析和可视化的笔记本工具。虽然它们有不同的主要用途,但可以结合使用以满足一些复杂的数据处理和分析需求。
下面是一些结合使用Airflow和Zeppelin的方式:
-
Airflow调度Zeppelin Notebooks:
- 使用Airflow编写调度任务,以便在特定时间或事件触发时运行Zeppelin笔记本。
- 在Airflow中使用Zeppelin的REST API或CLI命令来触发Zeppelin笔记本的执行。
-
数据流管道:
- 使用Airflow编排数据处理和转换任务,例如从数据源提取数据、清理和转换数据。
- 在Zeppelin中创建笔记本,用于进一步的数据分析、可视化和报告生成。
- Airflow任务完成后,触发Zeppelin笔记本执行以基于最新数据执行分析。
-
参数传递:
- 通过Airflow参数传递,将一些参数值传递给Zeppelin笔记本,以便在不同任务之间共享信息。
- Zeppelin笔记本可以从Airflow任务中获取参数值,以适应特定的数据分析需求。
-
日志和监控:
- 使用Airflow监控工作流的运行情况,查看任务的日志和执行状态。
- 在Zeppelin中记录和可视化Airflow工作流的关键指标,以获得更全面的工作流性能洞察。
-
整合数据存储:
- Airflow可以用于从不同数据源中提取数据,然后将数据传递给Zeppelin进行进一步的分析。
- Zeppelin可以使用Airflow任务生成的数据,进行更深入的数据挖掘和分析。
结合使用Airflow和Zeppelin能够充分发挥它们各自的优势,实现更全面、可控和可视化的数据处理和分析工作流。
一、安装Airflow
安装参考:
https://airflow.apache.org/docs/apache-airflow/stable/start.html
CentOS 7.9安装后启动会报错,还需要配置下sqlite,参考:https://airflow.apache.org/docs/apache-airflow/2.8.0/howto/set-up-database.html#setting-up-a-sqlite-database
[root@slas bin]# airflow standalone
Traceback (most recent call last):File "/root/.pyenv/versions/3.9.10/bin/airflow", line 5, in <module>from airflow.__main__ import mainFile "/root/.pyenv/versions/3.9.10/lib/python3.9/site-packages/airflow/__init__.py", line 52, in <module>from airflow import configuration, settingsFile "/root/.pyenv/versions/3.9.10/lib/python3.9/site-packages/airflow/configuration.py", line 2326, in <module>conf.validate()File "/root/.pyenv/versions/3.9.10/lib/python3.9/site-packages/airflow/configuration.py", line 718, in validateself._validate_sqlite3_version()File "/root/.pyenv/versions/3.9.10/lib/python3.9/site-packages/airflow/configuration.py", line 824, in _validate_sqlite3_versionraise AirflowConfigException(
airflow.exceptions.AirflowConfigException: error: SQLite C library too old (< 3.15.0). See https://airflow.apache.org/docs/apache-airflow/2.8.0/howto/set-up-database.html#setting-up-a-sqlite-database
二、使用步骤
1.目标
我想做个简单的demo,包括两个节点,实现如图所示功能,读取csv,去重:
csv文件输入在airflow上实现,去重在zeppelin上实现。
2.编写DAG
先实现extract_data_script.py,做个简单的读取csv指定列数据写入新的csv文件。
import argparse
import pandas as pddef extract_and_write_data(date, input_csv, output_csv, columns_to_extract):# 读取指定列的数据csv_file_path = f"/home/works/datasets/data_{date}.csv"df = pd.read_csv(csv_file_path, usecols=columns_to_extract)# 将数据写入新的 CSV 文件df.to_csv(output_csv, index=False)if __name__ == "__main__":parser = argparse.ArgumentParser()parser.add_argument("--date", type=str, required=True, help="Date parameter passed by Airflow")args = parser.parse_args()# 输出 CSV 文件路径(替换为实际的路径)output_csv_path = "/home/works/output/extracted_data.csv"# 指定要提取的列columns_to_extract = ['column1', 'column2', 'column3']# 调用函数进行数据提取和写入extract_and_write_data(args.date, input_csv_path, output_csv_path, columns_to_extract)
然后在 Zeppelin 中创建一个 Python 笔记本(Notebook),其中包含被 Airflow DAG 调用的代码。加载先前从 output/extracted_data.csv 文件中提取的数据:
%python# 导入必要的库
import pandas as pd# 加载先前从 CSV 文件中提取的数据
csv_file_path = "/home/works/output/extracted_data.csv"
# 读取 CSV 文件
df = pd.read_csv(csv_file_path)# 过滤掉 column1 为空的行
df = df[df['column1'].notnull()]# 去重,以 column2、column3 字段为联合去重依据
deduplicated_df = df.drop_duplicates(subset=["column2", "column3"])# 保存去重后的结果到新的 CSV 文件
deduplicated_df.to_csv("/home/works/output/dd_data.csv", index=False)
将这个 Zeppelin 笔记本保存,并记住笔记本的 ID, Airflow DAG 需要使用这个 ID 来调用 Zeppelin 笔记本。
接下来,用VSCode编写zeppelin_integration.py代码如下,上传到$AIRFLOW_HOME/dags目录下:
from airflow import DAG
from airflow.operators.bash_operator import BashOperator
from datetime import datetime, timedeltadefault_args = {'owner': 'airflow','depends_on_past': False,'start_date': datetime(2024, 1, 1),'email_on_failure': False,'email_on_retry': False,'retries': 1,'retry_delay': timedelta(minutes=5),
}dag = DAG('zeppelin_integration',default_args=default_args,schedule_interval=timedelta(days=1),
)extract_data_task = BashOperator(task_id='extract_data',bash_command='python /home/works/z/extract_data_script.py --date {{ ds }}',dag=dag,
)run_zeppelin_notebook_task = BashOperator(task_id='run_zeppelin_notebook',bash_command='curl -X POST http://zeppelin-server:zeppelin-port/api/notebook/job/notebook-id',dag=dag,
)# 设置关联度
extract_data_task >> run_zeppelin_notebook_task
2.加载、执行DAG
如下命令:
[root@slas dags]# airflow dags trigger zeppelin_integration
[2024-01-19T11:23:54.331+0800] {__init__.py:42} INFO - Loaded API auth backend: airflow.api.auth.backend.session
conf | dag_id | dag_run_id | data_interval_start | data_interval_end | end_date | external_trigger | last_scheduling_decision | logical_date | run_type | start_date | state
=====+======================+===================================+===========================+===========================+==========+==================+==========================+===========================+==========+============+=======
{} | zeppelin_integration | manual__2024-01-19T03:23:54+00:00 | 2024-01-18T03:23:54+00:00 | 2024-01-19T03:23:54+00:00 | None | True | None | 2024-01-19T03:23:54+00:00 | manual | None | queued
页面上会增加一个DAG,如图:
在Actions里点击执行。
总结
以上就是今天要讲的内容,总体来说集成两个工具还是很方便的,期待后面更多的应用。