【PyTorch】PyTorch之Reduction Ops

文章目录

  • 前言
  • 一、ARGMAX
  • 二、ARGMIN
  • 三、AMAX和AMIN
  • 四、ALL和ANY
  • 五、MAX和MIN
  • 六、MEAN
  • 七、MEDIAN
  • 八、NORM
  • 九、PROD
  • 十、STD
  • 十一、SUM
  • 十二、UNIQUE
  • 十三、VAR


前言

介绍pytorch的Reduction Ops。

一、ARGMAX

torch.argmax(input, dim, keepdim=False) → LongTensor
Parameters:
input (Tensor) – the input tensor.
dim (int) – the dimension to reduce. If None, the argmax of the flattened input is returned.
keepdim (bool) – whether the output tensor has dim retained or not. Ignored if dim=None.

返回输入张量中所有元素的最大值的索引。
这是 torch.max() 返回的第二个值。
注意:
如果存在多个最大值,则返回第一个最大值的索引。

在这里插入图片描述
在这里插入图片描述

二、ARGMIN

torch.argmin(input, dim=None, keepdim=False) → LongTensor
Parameters:
input (Tensor) – the input tensor.
dim (int) – the dimension to reduce. If None, the argmin of the flattened input is returned.
keepdim (bool) – whether the output tensor has dim retained or not…

返回输入张量中所有元素的最小值的索引。
这是 torch.min() 返回的第二个值。
注意:
如果存在多个最小值,则返回第一个最小值的索引。
在这里插入图片描述

三、AMAX和AMIN

torch.amax(input, dim, keepdim=False, , out=None) → Tensor
torch.amin(input, dim, keepdim=False, , out=None) → Tensor
Parameters:
input (Tensor) – the input tensor.
dim (int or tuple of ints) – the dimension or dimensions to reduce.
keepdim (bool) – whether the output tensor has dim retained or not.
Keyword Arguments:
out (Tensor, optional) – the output tensor.

返回输入张量在给定维度(维度)dim中的每个切片的最大值/最小值。
注意:
max/min 与 amax/amin 之间的区别为:

  • amax/amin 支持在多个维度上进行减少,
  • amax/amin 不返回索引,
  • amax/amin 在相等的值之间均匀分配梯度,而 max(dim)/min(dim) 仅将梯度传播到源张量中的单个索引。

如果 keepdim 为 True,则输出张量在除了维度(维度)dim的位置大小与输入相同。否则,dim 被挤压(参见 torch.squeeze()),导致输出张量的维度减少1(或 len(dim))。

在这里插入图片描述
在这里插入图片描述

四、ALL和ANY

torch.all(input) → Tensor
torch.any(input) → Tensor

all:输入中是否所有的任何元素评估为 True。
any:测试输入中是否有任何元素评估为 True。
此函数匹配 NumPy 的行为,在除 uint8 外的所有支持的 dtype 上返回 bool 类型的输出。对于 uint8,输出的 dtype 本身是 uint8。
在这里插入图片描述
在这里插入图片描述

五、MAX和MIN

**torch.max(input, dim, keepdim=False, , out=None)
torch.min(input, dim, keepdim=False, , out=None)
Parameters:
input (Tensor) – the input tensor.
dim (int) – the dimension to reduce.
keepdim (bool) – whether the output tensor has dim retained or not. Default: False.
Keyword Arguments:
out (tuple, optional) – the result tuple of two output tensors (max, max_indices)

返回一个命名元组 (values, indices),其中 values 是输入张量在给定维度 dim 中每行的最大值。而 indices 是找到的每个最大值的索引位置(argmax)。
如果 keepdim 为 True,则输出张量在除了维度 dim 的位置大小与输入相同。否则,dim 被挤压(参见 torch.squeeze()),导致输出张量的维度比输入少 1。
注意:
如果在缩减的行中存在多个最大值,则返回第一个最大值的索引。
在这里插入图片描述
在这里插入图片描述
torch.min()用法同torch.max()。

六、MEAN

*torch.mean(input, dim, keepdim=False, , dtype=None, out=None) → Tensor
Parameters:
input (Tensor) – the input tensor.
dim (int or tuple of ints) – the dimension or dimensions to reduce.
keepdim (bool) – whether the output tensor has dim retained or not.
Keyword Arguments:
dtype (torch.dtype, optional) – the desired data type of returned tensor. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. Default: None.
out (Tensor, optional) – the output tensor.

返回输入张量在给定维度 dim 中每行的均值。如果 dim 是维度的列表,则对所有维度进行缩减。
如果 keepdim 为 True,则输出张量在除了维度(维度)dim的位置大小与输入相同。否则,dim 被挤压(参见 torch.squeeze()),导致输出张量的维度减少1(或 len(dim))。

torch.nanmean() 计算非nan元素的平均值。

在这里插入图片描述

七、MEDIAN

*torch.median(input, dim=-1, keepdim=False, , out=None)
Parameters:
input (Tensor) – the input tensor.
dim (int) – the dimension to reduce.
keepdim (bool) – whether the output tensor has dim retained or not.
Keyword Arguments:
out ((Tensor, Tensor), optional) – The first tensor will be populated with the median values and the second tensor, which must have dtype long, with their indices in the dimension dim of input.

返回一个命名元组 (values, indices),其中 values 包含输入在维度 dim 中每行的中位数,而 indices 包含在维度 dim 中找到的中位数的索引。
默认情况下,dim 是输入张量的最后一个维度。
如果 keepdim 为 True,则输出张量在除了维度 dim 的位置大小与输入相同。否则,dim 被挤压(参见 torch.squeeze()),导致输出张量的维度比输入少 1。
注意:
对于在维度 dim 中元素数为偶数的输入张量,中位数不是唯一的。在这种情况下,返回两个中位数中较小的一个。要计算输入中两个中位数的平均值,请使用 torch.quantile() 并将 q 设为 0.5。
警告:
indices 不一定包含找到的每个中位数值的第一个出现,除非它是唯一的。确切的实现细节是特定于设备的。一般而言,不要期望在 CPU 和 GPU 上运行时获得相同的结果。出于同样的原因,不要期望梯度是确定性的。
在这里插入图片描述
torch.nanmedian() 返回输入数据的中值,忽略NAN值

八、NORM

九、PROD

*torch.prod(input, dim, keepdim=False, , dtype=None) → Tensor
Parameters:
input (Tensor) – the input tensor.
dim (int) – the dimension to reduce.
keepdim (bool) – whether the output tensor has dim retained or not.
Keyword Arguments:
dtype (torch.dtype, optional) – the desired data type of returned tensor. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. Default: None.

返回给定维度dim中输入张量的每一行的乘积。

在这里插入图片描述

十、STD

*torch.std(input, dim=None, , correction=1, keepdim=False, out=None) → Tensor
Parameters:
input (Tensor) – the input tensor.
dim (int or tuple of ints) – the dimension or dimensions to reduce.
Keyword Arguments:
correction (int)
difference between the sample size and sample degrees of freedom. Defaults to Bessel’s correction, correction=1.
keepdim (bool) – whether the output tensor has dim retained or not.
out (Tensor, optional) – the output tensor.

计算沿指定维度 dim 的标准差。dim 可以是单个维度、维度列表或 None(在所有维度上进行缩减)。
标准差(σ)的计算方式是对每个维度的元素进行以下步骤:

  • 计算该维度上的平均值(μ)。
  • 对每个元素,计算其与平均值的差值,然后取平方。
  • 对所有差值的平方求和。
  • 将总和除以元素的数量。
  • 取结果的平方根,得到标准差。

在这里插入图片描述

如果 keepdim 为 True,则输出张量在除了维度 dim 的位置大小与输入相同。否则,dim 被挤压(参见 torch.squeeze()),导致输出张量的维度比输入少 1(或 len(dim))。

在这里插入图片描述

十一、SUM

**torch.sum(input, dim, keepdim=False, , dtype=None) → Tensor
Parameters:
input (Tensor) – the input tensor.
dim (int or tuple of ints, optional) – the dimension or dimensions to reduce. If None, all dimensions are reduced.
keepdim (bool) – whether the output tensor has dim retained or not.
Keyword Arguments:
dtype (torch.dtype, optional) – the desired data type of returned tensor. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. Default: None.

返回给定维度dim中输入张量的每行之和。如果dim是一个维度列表,则对所有维度进行约简。

在这里插入图片描述
torch.nansum() 返回所有元素的和,将非数字(nan)视为零。

十二、UNIQUE

torch.unique(input, sorted=True, return_inverse=False, return_counts=False, dim=None) → Tuple[Tensor, Tensor, Tensor]
Parameters:
input (Tensor) – the input tensor
sorted (bool) – Whether to sort the unique elements in ascending order before returning as output.
return_inverse (bool) – Whether to also return the indices for where elements in the original input ended up in the returned unique list.
return_counts (bool) – Whether to also return the counts for each unique element.
dim (int, optional) – the dimension to operate upon. If None, the unique of the flattened input is returned. Otherwise, each of the tensors indexed by the given dimension is treated as one of the elements to apply the unique operation upon. See examples for more details. Default: None
Returns:
A tensor or a tuple of tensors containing
output (Tensor): the output list of unique scalar elements.
inverse_indices (Tensor): (optional) if return_inverse is True, there will be an additional returned tensor (same shape as input) representing the indices for where elements in the original input map to in the output; otherwise, this function will only return a single tensor.
counts (Tensor): (optional) if return_counts is True, there will be an additional returned tensor (same shape as output or output.size(dim), if dim was specified) representing the number of occurrences for each unique value or tensor.
Return type:
(Tensor, Tensor (optional), Tensor (optional))

返回输入张量的唯一元素。
注意:
此函数与 torch.unique_consecutive() 不同,因为此函数还会消除非连续的重复值。
当前在 CUDA 实现和 CPU 实现中,当指定 dim 时,torch.unique 无论 sort 参数如何,都会在开始时对张量进行排序。排序可能会很慢,因此如果您的输入张量已经排序,建议使用 torch.unique_consecutive(),它避免了排序操作。

在这里插入图片描述
在这里插入图片描述

十三、VAR

*torch.var(input, dim=None, , correction=1, keepdim=False, out=None) → Tensor
Parameters:
input (Tensor) – the input tensor.
dim (int or tuple of ints, optional) – the dimension or dimensions to reduce. If None, all dimensions are reduced.
Keyword Arguments:
correction (int)
difference between the sample size and sample degrees of freedom. Defaults to Bessel’s correction, correction=1.
keepdim (bool) – whether the output tensor has dim retained or not.
out (Tensor, optional) – the output tensor.

计算沿指定维度 dim 的方差。dim 可以是单个维度、维度列表或 None(在所有维度上进行缩减)。计算公式如下:
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/414838.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

(2023版)斯坦福CS231n学习笔记:DL与CV教程 (12) | 视觉模型可视化与可解释性(Visualizing and Understanding)

前言 📚 笔记专栏:斯坦福CS231N:面向视觉识别的卷积神经网络(23)🔗 课程链接:https://www.bilibili.com/video/BV1xV411R7i5💻 CS231n: 深度学习计算机视觉(2017&#xf…

Java多线程并发篇----第二十三篇

系列文章目录 文章目录 系列文章目录前言一、在 java 中守护线程和本地线程区别二、线程与进程的区别?三、什么是多线程中的上下文切换?四、死锁与活锁的区别,死锁与饥饿的区别?前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。…

c4d阿诺德怎么渲染高清图片

c4d作为也可热门建模工具,该渲染器支持多种渲染器使用,很多人在选择阿诺德渲染器是出现了高清图片无法渲染的问题,阿诺德可提供逼真的光影效果和物理材质,那么怎么利永阿诺德渲染高清的图片呢,一起来简单看看吧。 c4d阿…

设计模式篇章(4)——十一种行为型模式

这个设计模式主要思考的是如何分配对象的职责和将对象之间相互协作完成单个对象无法完成的任务,这个与结构型模式有点像,结构型可以理解为静态的组合,例如将不同的组件拼起来成为一个更大的组件;而行为型更是一种动态或者具有某个…

C++ 设计模式之观察者模式

【声明】本题目来源于卡码网(题目页面 (kamacoder.com)) 【提示:如果不想看文字介绍,可以直接跳转到C编码部分】 【设计模式大纲】 前面的文章介绍了创建型模式和结构型模式,今天开始介绍行为型模式。 【简介】什么是…

第三讲_ArkTS的初识

ArkTS的初识 1. ArkTS的基本组成2. ArkTS自定义组件 1. ArkTS的基本组成 装饰器: 用于装饰类、结构、方法以及变量,并赋予其特殊的含义。自定义组件:可复用的UI单元,可组合其他组件,图示中Component装饰的struct Hello…

Windterm使用总结

Windterm是一款部分开源的终端软件,目前作者又开始更新了,目前最新版本WindTerm 2.6.0 Prerelease 10。下载地址:https://github.com/kingToolbox/WindTerm/releases 自己遇到的使用问题总结如下。 1. telnet登录设备,按退格键无…

python爬虫--网页代码抓取

我回来了。 目录 前言一、爬虫是什么?二、使用步骤代码讲解第一版第二版第三版 总结 前言 爬虫,第一章 一、爬虫是什么? 爬虫是指一种自动化程序,通常被用于互联网上的数据采集。这些程序会模拟人类用户的行为,通过…

归并排序详解

目录 ​💡基本思想 💡图文介绍 💡动图演示 💡过程解释 💡代码实现 💡递归实现 💡非递归实现 💡总结 💡基本思想 归并排序(MERGE-SORT)是…

SpringBoot——纯注解配置的Spring

1.环境搭建 1.1.创建工程 拷贝ssm工程: 1.2.待改造的问题 我们发现,之所以我们现在离不开xml配置文件,是因为我们有一处很关键的配置,如果他要也能用注解配置,那么我们就可以脱离xml文件了: 1.2.1.jdbc…

HCIA的路由协议

动态路由协议/静态路由协议 路由表的加表规则: 当学习到多条路由条目时,先比较优先级,优先级小(优先级大)优先加表,如果优先级一致,比较cost值,cost值小的优先加表,如果…

为什么网上很多人都不推荐新手学习C语言?

今日话题,为什么网上很多人都不推荐新手学习C语言?实际情况并非如此。相反,C语言对于新手来说是一门非常适合入门的编程语言。首先,C语言具有较低的学习曲线。新手只需掌握基本的if-else条件语句和for循环结构,就能开始…