论文阅读笔记AI篇 —— Transformer模型理论+实战 (三)

论文阅读笔记AI篇 —— Transformer模型理论+实战 (三)

  • 第三遍阅读(精读)
    • 3.1 Attention和Self-Attention的区别?
    • 3.2 Transformer是如何进行堆叠的?
    • 3.3 如何理解Positional Encoding?
    • 3.x 文章涉及的其它知识盲区

第三遍阅读(精读)

精读的过程要把每个细节都钻研透,不留有死角。各种维度参数已经在“理论+实战(二)”中说清楚了,若之后还有疑问我再补上。

三、参考文章或视频链接
[1] 【超强动画,一步一步深入浅出解释Transformer原理!】

3.1 Attention和Self-Attention的区别?

3.1 参考文章或视频链接
[1] What’s the difference between Attention vs Self-Attention? What problems does each other solve that the other can’t?
[2] What’s the Difference Between Self-Attention and Attention in Transformer Architecture?

3.2 Transformer是如何进行堆叠的?

原文提到了Encoder与Decoder是可以进行 N × N\times N× 堆叠的,那么堆叠之后的结构是什么?可以看到这就是堆叠之后的结构,这里的features是中间编码,6层decoder,每一层都需要拿features作为输入的一部分,这种设计思想也类似于ResNet。

图1 —— 来自参考文章[1]

再看到原始的Transformer结构图中,对Outputs提到了一个(shifted right),这是什么意思?参考文章[4]中的动图诠释了这一点,shifted right是说不停的拿最新的预测词作为Outputs的输入,其实仔细想想,你写文章也绝对不可能是写下一个词语而不依赖上一句,一定是有前文的信息作为输入,才能让你流畅的写出下一个词语的。

图2 —— 来自参考文章[4]

3.5 参考文章或视频链接
[1] Transformer’s Encoder-Decoder Let’s Understand The Model Architecture
[2] What is purpose of stacking N=6 blocks of encoder and decoder in transformer?
[3] Stacked encoder and decoder blocks used in Transformers
[4] The Transformer Model - A Step by Step Breakdown of the Transformer’s Encoder-Decoder Architecture

3.3 如何理解Positional Encoding?

“需要使用Positional Encoding的原因也很简单,因为 Transformer 摈弃了 RNN 的结构,因此需要一个东西来标记各个字之间的时序,换言之,也即位置关系,而这个东西,就是位置嵌入”[2],文章[2]又说,理想情况下,位置嵌入的设计应该满足以下条件:

  • 它应该为每个字输出唯一的编码
  • 不同长度的句子之间,任何两个字之间的差值应该保持一致
  • 它的值应该是有界的

先来看到文章中的Positional Encoding公式:
P E ( p o s , 2 i ) = s i n ( p o s 1000 0 2 i d m o d e l ) PE(pos, 2i)=sin(\frac{pos}{10000^\frac{2i}{d_{model}}}) PE(pos,2i)=sin(10000dmodel2ipos)
P E ( p o s , 2 i + 1 ) = c o s ( p o s 1000 0 2 i d m o d e l ) PE(pos, 2i+1)=cos(\frac{pos}{10000^\frac{2i}{d_{model}}}) PE(pos,2i+1)=cos(10000dmodel2ipos)

  • d m o d e l = 512 d_{model}=512 dmodel=512是作者规定好的,代表编码长度。应该也可以修改的更长以提升性能?我不清楚,这里取何值较为合适呢?肯定有一个最优值。
  • i i i 是指维度的下标,结合式子 2 i d m o d e l \frac{2i}{d_{model}} dmodel2i中的分母 d m o d e l d_{model} dmodel理解,应该有 i ∈ [ 0 , d m o d e l − 1 2 ] i \in [0, \frac{d_{model}-1}{2}] i[0,2dmodel1],这是因为Word Embedding的维度大小是 d m o d e l d_{model} dmodel,所以为了Positional Embedding能与Word Embedding相加,肯定要能够一一对应。
    p o s pos pos 为某句话中,这个Word所处的位置。

But using binary values would be a waste of space in the world of floats. 看英文原文有这么一句,

Positional Embedding 与 Word Embedding可以分开做concat拼接,但concat不一定有优势,初看这个东西我一定觉得作者在装神弄鬼,看完我理解了Positional Embedding的作用。

但是对于Word Embedding与Positional Embedding二者相加后,这个位置信息是如何体现出来的,则不甚明了,因为这就像两种颜色的墨水进行混合,Word Embedding是黑墨水,Positional Embedding是红墨水,两种数据直接相加就像把两种颜色的墨水混合到一起,那么要如何在相加之后的混合结果中体现Positional信息,则是我感到疑惑的。

Why do we mix two different concepts into the same multi-dimensional space? How can a model distinguish between word embeddings and positional encodings? [3] 两件毫不相干的事情怎么能相加到一个空间中,model要如何区分他们呢?
The model can learn to use the positional information without confusing the embedding (semantic) information. It’s hard to imagine what’s happening inside the network, yet it works. model可以在不混淆word embedding的情况下学到位置信息,你很难想象网络中究竟发生了,什么然而它就是工作了。然而,这是个什么解释? 所谓ai的黑箱模型,恐怕说的就是这一点,神经网络的拟合能力太过强大了,以至于我们都不知道内部究竟发生了什么。

3.6 参考文章或视频链接
[1] Positional Encoding
重点阅读:[2]
中文版:《Transformer 中的 Positional Encoding》
英文版:Transformer Architecture: The Positional Encoding
[3] Transformer’s Positional Encoding

3.x 文章涉及的其它知识盲区

问题总结参考文章
什么是BLEU(Bilingual Evaluation Understudy,双语评估替换分数)?一种机器翻译任务的评价指标[1] 《BLEU详解》- 知乎

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/417662.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【数据结构】详谈队列的顺序存储及C语言实现

循环队列及其基本操作的C语言实现 前言一、队列的顺序存储1.1 队尾指针与队头指针1.2 基本操作实现的底层逻辑1.2.1 队列的创建与销毁1.2.2 队列的增加与删除1.2.3 队列的判空与判满1.2.4 逻辑的局限性 二、循环队列2.1 循环队列的实现逻辑一2.2 循环队列的实现逻辑二2.3 循环队…

CodeReview 小工具

大家开发中有没有遇到一个版本开发的非常杂,开发很多个项目,改动几周后甚至已经忘了自己改了些什么,领导要对代码review的时候,理不清楚自己改过的代码,只能将主要改动的大功能过一遍。这样就很容易造成review遗漏&…

软件测试(一)

软件测试——测试用例 🏐测试用例要素(四个重要的要素)🏐测试用例的设计方法🏀基于需求的设计方法🏀等价类🏀边界值🏀判定表🏀正交表法🏀场景设计法&#x1f…

Prompt高级技巧:Few-Shots、COT、SC、TOT、Step-Back

CRISPE框架 如图所示。所谓CRISPE框架,指的是: CR:Capacity and Role(能力与角色)。你希望 ChatGPT 扮演怎样的角色。I:Insight(洞察),背景信息和上下文。S:&#xff08…

在IDEA上运行成功,打包成jar包后,运行报错,程序自动退出

原因 java环境不正确,很有可能安装了多个环境,导致程序加载了错误程序。 解决办法 尝试修改环境变量,如果不行,建议删除掉多余的java环境。 注意:删除掉多余的Java环境需要用程序删除,直接删除文件&#xf…

两年过去,这个“核弹级”漏洞仍未消散

还记得2年前,那个号称“核弹级”的漏洞吗? 没错,就是现代网络安全史上最严重的漏洞“Log4shell”。当它刚被爆出的时候,全世界都炸了锅,各国政府积极响应,发布警告应对漏洞威胁,各家公司积极排…

海外云手机:跨境养号的新趋势

近年来,市场综合数据显示,利用海外云手机进行跨境养号已经成为跨境电商发展的新潮流。特别是在社交电商营销和短视频引流领域,海外云手机不仅能够提高流量的质量,还能让商家实现业务翻倍增长。接下来,本文将简要阐述海…

C++ 学习系列 -- std::function 与 std::bind

一 std::function 与 std::bind 的介绍 1. std::function std::function 是 c 11 的新特性 &#xff0c;包含在头文件<functional>中&#xff0c;为了更方便的调用函数而引入。 std::function 是一个函数包装器&#xff08;function wrapper&#xff09;&#xff0c;…

day24 回溯算法 组合

题目1&#xff1a;77 组合 题目链接&#xff1a;77 组合 题意 返回[1,n]中k个数的组合 元素不可以重复使用 回溯 回溯三部曲 1&#xff09;参数和返回值 void n k 2&#xff09;终止条件 叶子节点的大小为2 终止&#xff0c;放到数组中 3&#xff09;单层递归逻辑…

23级应届生如何找java工作?

Java应届生找工作&#xff0c;不能单靠背面试题&#xff0c;更不能在简历中堆砌和找工作关系不大的校园实践经历&#xff0c;而是更要在面试中能证明自己的java相关商业项目经验。其实不少应届生Java求职者不是说没真实Java项目经验&#xff0c;而是不知道怎么挖掘&#xff0c;…

Redis主从架构、哨兵集群原理实战

1.主从架构简介 背景 单机部署简单&#xff0c;但是可靠性低&#xff0c;且不能很好利用CPU多核处理能力生产环境必须要保证高可用&#xff0c;一般不可能单机部署读写分离是可用性要求不高、性能要求较高、数据规模小的情况 目标 读写分离&#xff0c;扩展主节点的读能力&…

【加强版】小学数学出题,加减乘除混合运算,支持自定义数字,一键打印

在线预览&#xff1a;在线HTML代码预览和运行工具 - UU在线工具 复制下面代码后到该地址预览即可 注意&#xff1a;在线预览不能打印。如需打印&#xff0c;在电脑本地上新建文本文档&#xff0c;粘贴代码后保存&#xff0c;然后把文件后缀改为.html运行&#xff0c;出题点击…