【从零到一AIGC源码解析系列1】文本生成图片Stable Diffusion的diffusers实现

目录

1. 如何使用 StableDiffusionPipeline

1.1环境配置

1.2 Stable Diffusion Pipeline

 1.3生成非正方形图像

2. 如何使用 diffusers 构造自己的推理管线

关注公众号【AI杰克王】


Stable Diffusion是由CompVis、StabilityAl和LAION的研究人员和工程师创建的文本到图像潜在扩散模型。

它使用来自LAION-5B数据库子集的512x512图像进行训练。该模型使用冻结的CLIPViT-L/14文本编码器,并根据文本提示词来控制模型生成图片。

该模型具有860M参数的UNet和123M参数文本编码器,相对轻量级,可以在许多消费级GPU上运行。

*注:本文结合diffusers库来实现

1. 如何使用 StableDiffusionPipeline

1.1环境配置

首先确保GPU已经安装,使用如下命令:

nvidia-smi

其次安装 diffusers 以及 scipy 、 ftfy 和transformers. accelerate 用于实现更快的加载。

pip install diffusers==0.11.1
pip install transformers scipy ftfy accelerate

1.2 Stable Diffusion Pipeline

StableDiffusionPipeline 是一个端到端推理管道,只需几行代码即可使用它从文本生成图像。

首先,我们加载模型所有组件的预训练权重。在此次实验中,我们使用Stable Diffusion 1.4 (CompVis/stable-diffusion-v1-4)。也有其他变种可以使用,如下:

runwayml/stable-diffusion-v1-5
stabilityai/stable-diffusion-2-1-base
stabilityai/stable-diffusion-2-1

stabilityai/stable-diffusion-2-1 版本可以生成分辨率为 768x768 的图像,而其他版本则可以生成分辨率为 512x512 的图像。

我们除了传递模型ID CompVis/stable-diffusion-v1-4 之外,我们还将特定的 revision 和 torch_dtype 传递给from_pretrained 方法。

为了节省内存使用量,我们使用半精度torch_dtype=torch.float16来推理模型:


import torch
from diffusers import StableDiffusionPipelinepipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)

接下来将整个推理管线移至 GPU 以实现更快的推理。

pipe = pipe.to("cuda")

这时准备生成图像。

prompt = "a photograph of an astronaut riding a horse"
image = pipe(prompt).images[0]  # image here is in [PIL format](https://pillow.readthedocs.io/en/stable/)# Now to display an image you can either save it such as:
image.save(f"astronaut_rides_horse.png")

结果如下:

 每次运行上述代码都会生成不同图片。如果想要每次输出图片保持一致,需要传入一个固定种子。

import torchgenerator = torch.Generator("cuda").manual_seed(1024)image = pipe(prompt, generator=generator).images[0]

 另外可以使用 num_inference_steps 参数更改推理步骤数。一般来说,使用的步骤越多,结果就越好。稳定扩散是最新的模型之一,只需相对较少的步骤就可以很好地工作。如果想要更快的结果,可以使用较小的数字。

以下结果使用与之前相同的种子,但num_inference_steps =15,步骤更少。可以看到,一些细节(例如马头或头盔)与上一张图像相比不太真实和清晰:

 Stable Diffusion的另一个参数是 guidance_scale 。简单来说,无分类器指导CFG迫使生成的图片更好地与提示文本匹配。像 7 或 8.5 这样的数字会给出很好的结果。

如果使用很大的数字,图像可能看起来不错,但多样性会降低。

要为同一提示生成多个图像,我们只需使用重复多次相同提示的列表即可。我们将把提示词列表(包含多个提示词)作为参数传入管线,而不是我们之前使用的单个字符串。

from PIL import Imagedef image_grid(imgs, rows, cols):assert len(imgs) == rows*colsw, h = imgs[0].sizegrid = Image.new('RGB', size=(cols*w, rows*h))grid_w, grid_h = grid.sizefor i, img in enumerate(imgs):grid.paste(img, box=(i%cols*w, i//cols*h))return grid

 现在,我们可以在运行带有 3 个提示列表的pipe后生成网格图像。

 以下是如何生成 n × m 图像网格。

num_cols = 3
num_rows = 4prompt = ["a photograph of an astronaut riding a horse"] * num_colsall_images = []
for i in range(num_rows):images = pipe(prompt).imagesall_images.extend(images)grid = image_grid(all_images, rows=num_rows, cols=num_cols)

1.3生成非正方形图像

默认情况下,Stable Diffusion会生成 512 × 512 像素的图像。但使用 height 和 width 参数覆盖默认值非常容易,可以按纵向或横向比例创建矩形图像。

以下是选择良好图像尺寸的一些建议:

  • 确保 height 和 width 都是 8 的倍数。

  • 低于 512 可能会导致图像质量较低。

  • 两个方向超过 512 将重复图像区域(全局连贯性丢失)

  • 创建非方形图像的最佳方法是在一维中使用 512 ,并在另一维中使用大于该值的值。

prompt = "a photograph of an astronaut riding a horse"image = pipe(prompt, height=512, width=768).images[0]

2. 如何使用 diffusers 构造自己的推理管线

先逐步浏览一下 StableDiffusionPipeline ,看看我们自己如何编写它。

我们从加载所涉及的各个模型开始。

import torch
torch_device = "cuda" if torch.cuda.is_available() else "cpu"

预训练模型包括设置完整扩散线所需的所有组件。它们存储在以下文件夹中:

text_encoder :稳定扩散使用 CLIP,但其他扩散模型可能使用其他编码器,例如 BERT 。
tokenizer 。它必须与text_encoder 模型使用的模型匹配。
scheduler :用于在训练期间逐步向图像添加噪声的调度算法。
unet :用于生成输入的潜在表示的模型。
vae :自动编码器模块,我们将使用它来将潜在表示解码为真实图像。

我们可以通过使用 from_pretrained 的 subfolder 参数引用它们保存的文件夹来加载组件。

from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, UNet2DConditionModel, PNDMScheduler# 1. Load the autoencoder model which will be used to decode the latents into image space. 
vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae")# 2. Load the tokenizer and text encoder to tokenize and encode the text. 
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")# 3. The UNet model for generating the latents.
unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet")

这里,我们使用 K-LMS 调度程序,而不是加载预定义的调度程序。

from diffusers import LMSDiscreteSchedulerscheduler = LMSDiscreteScheduler.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="scheduler")

接下来将模型移至 GPU。

vae = vae.to(torch_device)
text_encoder = text_encoder.to(torch_device)
unet = unet.to(torch_device)

我们现在定义将用于生成图像的参数。

请注意,guidance_scale 的定义类似于 Imagen 论文中等式 (2) 的指导权重 w 。guidance_scale == 1 对应于不进行无分类器指导。这里我们将其设置为 7.5,就像之前所做的那样。

与前面的示例相反,我们将 num_inference_steps 设置为 100 以获得更加清晰的图像。

prompt = ["a photograph of an astronaut riding a horse"]height = 512                        # default height of Stable Diffusion
width = 512                         # default width of Stable Diffusionnum_inference_steps = 100            # Number of denoising stepsguidance_scale = 7.5                # Scale for classifier-free guidancegenerator = torch.manual_seed(32)   # Seed generator to create the inital latent noisebatch_size = 1

首先,我们获取提示的 text_embeddings。这些嵌入将用于控制 UNet 模型输出。

text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")with torch.no_grad():text_embeddings = text_encoder(text_input.input_ids.to(torch_device))[0]

我们还将获得无分类器指导的无条件文本嵌入,这只是填充标记(空文本)的嵌入。它们需要具有与条件 text_embeddings 相同的形状( batch_size 和 seq_length )

max_length = text_input.input_ids.shape[-1]
uncond_input = tokenizer([""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
)
with torch.no_grad():uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]

对于无分类器指导,我们需要进行两次前向传递。一个具有条件输入 ( text_embeddings ),另一个具有无条件嵌入 ( uncond_embeddings )。在实践中,我们可以将两者连接成一个批次,以避免进行两次前向传递。

text_embeddings = torch.cat([uncond_embeddings, text_embeddings])

这里生成初始随机噪声。

latents = torch.randn((batch_size, unet.in_channels, height // 8, width // 8),generator=generator,
)
latents = latents.to(torch_device)

注意这里的latents的shape是torch.Size([1, 4, 64, 64])。

模型后续会将这种潜在表示(纯噪声)转换为 512 × 512 图像。

接下来,我们使用选择的 num_inference_steps 初始化调度程序。这将计算去噪过程中要使用的 sigmas 和准确的时间步值。

scheduler.set_timesteps(num_inference_steps)

K-LMS 调度程序需要将latents 与其 sigma 值相乘。

latents = latents * scheduler.init_noise_sigma

编写去噪循环。

from tqdm.auto import tqdm
from torch import autocastfor t in tqdm(scheduler.timesteps):# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.latent_model_input = torch.cat([latents] * 2)latent_model_input = scheduler.scale_model_input(latent_model_input, t)# predict the noise residualwith torch.no_grad():noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample# perform guidancenoise_pred_uncond, noise_pred_text = noise_pred.chunk(2)noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)# compute the previous noisy sample x_t -> x_t-1latents = scheduler.step(noise_pred, t, latents).prev_sample

使用 vae 将生成的 latents 解码回图像。

# scale and decode the image latents with vae
latents = 1 / 0.18215 * latentswith torch.no_grad():image = vae.decode(latents).sample

最后,将图像转换为 PIL,以便可以显示或保存它。

关注公众号【AI杰克王】

1. 回复“资源”,获取AIGC 博客教程,顶级大学PPT知识干货;

2. 回复“星球”,获取AIGC 免费知识星球入口,有前沿资深算法工程师分享讨论。

欢迎加入AI杰克王的免费知识星球,海量干货等着你,一起探讨学习AIGC!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/417853.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

《Linux高性能服务器编程》笔记01

Linux高性能服务器编程 本文是读书笔记,如有侵权,请联系删除。 参考 Linux高性能服务器编程源码: https://github.com/raichen/LinuxServerCodes 豆瓣: Linux高性能服务器编程 文章目录 Linux高性能服务器编程第05章 Linux网络编程基础API5.1 socket…

【MySQL】——关系数据库标准语言SQL(大纲)

🎃个人专栏: 🐬 算法设计与分析:算法设计与分析_IT闫的博客-CSDN博客 🐳Java基础:Java基础_IT闫的博客-CSDN博客 🐋c语言:c语言_IT闫的博客-CSDN博客 🐟MySQL&#xff1a…

从零开始配置vim(Windows版)

事情是这样的,之前linux下vim用习惯了...然后就给自己win下vscode也装了个vim插件,用下来还是感觉不顺手,并且处理太多文本时有明显卡顿,于是乎自己配了下win版的vim。 不过好像也并不是从零开始的...初始基础版的.vimrc有copy他们…

【前端设计】流光按钮

欢迎来到前端设计专栏,本专栏收藏了一些好看且实用的前端作品,使用简单的html、css语法打造创意有趣的作品,为网站加入更多高级创意的元素。 css body{height: 100vh;display: flex;justify-content: center;align-items: center;background…

16k+ start 一个开源的的监控系统部署教程

安装条件 Linux或macOS系统 4GB内存 开放 33014、33174、3183端口 1.安装 1、下载源码 首先使用 git 克隆源码到本地 git clone -b main https://github.com/SigNoz/signoz.git && cd signoz/deploy/ 方式1:运行 install.sh 脚本一键安装 ./install.s…

西瓜书读书笔记整理(十二) —— 第十二章 计算学习理论

第十二章 计算学习理论(上) 12.1 基础知识12.1.1 什么是计算学习理论(computational learning theory)12.1.2 什么是独立同分布(independent and identically distributed, 简称 i . i . d . i.i.d. i.i.d.&#xff0…

扩散模型:Diffusion Model原理剖析

Diffusion Model 视频Training 第5行是唯一需要解释的地方, x 0 x_{0} x0​ 是干净的图片, ϵ θ \epsilon _{\theta } ϵθ​是前面说的Noise Predictor,它的输入包括加噪声之后的图像(红色框)以及时序 t t t , ϵ \epsilon ϵ 是训练的target也就是添加的噪声。它其…

Java代码审计Shiro反序列化DNS利用链CC利用链AES动态调试

目录 0x00 前言 0x01 Java原生反序列化介绍 0x02 安全问题1:重写toString方法(打印对象时触发) 0x03 安全问题2:重写readObject(反序列化时触发) 0x04 测试URLDNS链 0x05 Shiro550生成RememberMe Coo…

数据结构【DS】Ch6 图

文章目录 图的基本概念图的存储及基本操作图的遍历图的应用图的连通性问题最小生成树最短路径问题拓扑序列关键路径 图的基本概念 图的存储及基本操作 图的遍历 图的应用 图的连通性问题 最小生成树 最短路径问题 拓扑序列 关键路径

GetShell的姿势

0x00 什么是WebShell 渗透测试工作的一个阶段性目标就是获取目标服务器的操作控制权限,于是WebShell便应运而生。Webshell中的WEB就是web服务,shell就是管理攻击者与操作系统之间的交互。Webshell被称为攻击者通过Web服务器端口对Web服务器有一定的操作权…

网络编程01 常见名词的一些解释

本文将讲解网络编程的一些常见名词以及含义 在这之前让我们先唠一唠网络的产生吧,其实网络的产生也拯救了全世界 网络发展史 网络的产生是在美苏争霸的期间,实际上双方都持有核武器,希望把对方搞垮的同时不希望自己和对方两败俱伤. 希望破坏对方的核武器发射,这就涉及到三个方面…

Intel 显卡小结

Intel显卡从很早前的i740(98年2月,4或8M现存,i740的RAMDAC为203MHZ,支持2X AGP规格,核心频率80MHZ,采用8M速度为100MHZ的SGRAM显存,像素填充率为55MPixels/s,三角形生成速度为500K Trianglws/s,支持DVD解压,AGP 2X,同时…