Hive-SQL语法大全

Hive SQL 语法大全

基于语法描述说明

CREATE DATABASE [IF NOT EXISTS] db_name [LOCATION] 'path';
SELECT expr, ... FROM tbl ORDER BY col_name [ASC | DESC]
(A | B | C)

如上语法,在语法描述中出现:

  • [],表示可选,如上[LOCATION] 表示可写、可不写

  • |,表示或,如上ASC | DESC,表示二选一

  • …,表示序列,即未完结,如上SELECT expr, ... 表示在SELECT后可以跟多个expr(查询表达式),以逗号隔开

  • (),表示必填,如上(A | B | C)表示此处必填,填入内容在A、B、C中三选一

数据库操作

创建数据库

CREATE DATABASE [IF NOT EXISTS] db_name [LOCATION 'path'] [COMMENT database_comment];
  • IF NOT EXISTS,如存在同名数据库不执行任何操作,否则执行创建数据库操作

  • [LOCATION],自定义数据库存储位置,如不填写,默认数据库在HDFS的路径为:/user/hive/warehouse

  • [COMMENT database_comment],可选,数据库注释

删除数据库

DROP DATABASE [IF EXISTS] db_name [CASCADE];
  • [IF EXISTS],可选,如果存在此数据库执行删除,不存在不执行任何操作
  • [CASCADE],可选,级联删除,即数据库内存在表,使用CASCADE可以强制删除数据库

数据库修改LOCATION

ALTER DATABASE database_name SET LOCATION hdfs_path;

不会在HDFS对数据库所在目录进行改名,只是修改location后,新创建的表在新的路径,旧的不变

选择数据库

USE db_name;
  • 选择数据库后,后续SQL操作基于当前选择的库执行
  • 如不使用use,默认在default库执行

若想切换回使用default库

USE DEFAULT;

查询当前USE的数据库

SELECT current_database();

表操作

数据类型

分类类型描述字面量示例
原始类型BOOLEANtrue/falseTRUE
TINYINT1字节的有符号整数 -128~1271Y
SMALLINT2个字节的有符号整数,-32768~327671S
INT4个字节的带符号整数1
BIGINT8字节带符号整数1L
FLOAT4字节单精度浮点数1.0
DOUBLE8字节双精度浮点数1.0
DEICIMAL任意精度的带符号小数1.0
STRING字符串,变长“a”,’b’
VARCHAR变长字符串“a”,’b’
CHAR固定长度字符串“a”,’b’
BINARY字节数组
TIMESTAMP时间戳,毫秒值精度122327493795
DATE日期‘2016-03-29’
时间频率间隔
复杂类型ARRAY有序的的同类型的集合array(1,2)
MAPkey-value,key必须为原始类型,value可以任意类型map(‘a’,1,’b’,2)
STRUCT字段集合,类型可以不同struct(‘1’,1,1.0), named_stract(‘col1’,’1’,’col2’,1,’clo3’,1.0)
UNION在有限取值范围内的一个值create_union(1,’a’,63)

基础建表

CREATE [EXTERNAL] TABLE tb_name(col_name col_type [COMMENT col_comment], ......)[COMMENT tb_comment][PARTITIONED BY(col_name, col_type, ......)][CLUSTERED BY(col_name, col_type, ......) INTO num BUCKETS][ROW FORMAT DELIMITED FIELDS TERMINATED BY ''][LOCATION 'path']
  • [EXTERNAL],外部表,需搭配

    • [ROW FORMAT DELIMITED FIELDS TERMINATED BY '']指定列分隔符

    • [LOCATION 'path']表数据路径

    • 外部表示意

      CREATE EXTERNAL TABLE test_ext(id int) COMMENT 'external table' ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' LOCATION 'hdfs://node1:8020/tmp/test_ext';
      
  • [COMMENT tb_comment]表注释,可选

  • [PARTITIONED BY(col_name, col_type, ......)]基于列分区

    -- 分区表示意
    CREATE TABLE test_ext(id int) COMMENT 'partitioned table' PARTITION BY(year string, month string, day string) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';
    
  • [CLUSTERED BY(col_name, col_type, ......)]基于列分桶

    CREATE TABLE course (c_id string,c_name string,t_id string) CLUSTERED BY(c_id) INTO 3 BUCKETS ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';
    

基于其它表的结构建表

CREATE TABLE tbl_name LIKE other_tbl;

基于查询结果建表

CREATE TABLE tbl_name AS SELECT ...;

删除表

DROP TABLE tbl;

修改表

重命名

ALTER TABLE old RENAME TO new;

修改属性

ALTER TABLE tbl SET TBLPROPERTIES(key=value);
-- 常用属性
("EXTERNAL"="TRUE") -- 内外部表,TRUE表示外部表
('comment' = new_comment) -- 修改表注释
-- 其余属性参见
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-listTableProperties

分区操作

创建分区表

-- 分区表示意
CREATE TABLE test_ext(id int) COMMENT 'partitioned table' PARTITION BY(year string, month string, day string) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';

添加分区

ALTER TABLE tablename ADD PARTITION (partition_key='partition_value', ......);

修改分区值

ALTER TABLE tablename PARTITION (partition_key='old_partition_value') RENAME TO PARTITION (partition_key='new_partition_value');

注意

只会在元数据中修改,不会同步修改HDFS路径吗,如:

  • 原分区路径为:/user/hive/warehouse/test.db/test_table/month=201910,分区名:month='201910'
  • 将分区名修改为:201911后,分区所在路径不变,依旧是:/user/hive/warehouse/test.db/test_table/month=201910

如果希望修改分区名后,同步修改HDFS的路径,并保证正常可用,需要:

  • 在元数据库中:找到SDS表 -> 找到LOCATION列 -> 找到对应分区的路径记录进行修改
    • 如将记录的:/user/hive/warehouse/test.db/test_table/month=201910 修改为:/user/hive/warehouse/test.db/test_table/month=201911
  • 在HDFS中,同步修改文件夹名
    • 如将文件夹:/user/hive/warehouse/test.db/test_table/month=201910 修改为:/user/hive/warehouse/test.db/test_table/month=201911

删除分区

ALTER TABLE tablename DROP PARTITION (partition_key='partition_value');

删除分区后,只是在元数据中删除,即删除元数据库中:

  • PARTITION
  • SDS

相关记录

分区所在的HDFS文件夹依旧保留

加载数据

LOAD DATA

LOAD DATA [LOCAL] INPATH 'path' INTO TABLE tbl PARTITION(partition_key='partition_value');

INSERT SELECT

INSERT (OVERWRITE | INTO) TABLE tbl PARTITION(partition_key='partition_value') SELECT ... FROM ...;

分桶操作

建表

CREATE TABLE course (c_id string,c_name string,t_id string) [PARTITION(partition_key='partition_value')] CLUSTERED BY(c_id) INTO 3 BUCKETS ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';
  • CLUSTERED BY(col) 指定分桶列
  • INTO 3 BUCKETS,设定3个桶

分桶表需要开启:

set hive.enforce.bucketing=true;

设置自动匹配桶数量的reduces task数量

数据加载

INSERT (OVERWRITE | INTO) TABLE tbl [PARTITION(partition_key='partition_value')] SELECT ... FROM ... CLUSTER BY(col);

分桶表无法使用LOAD DATA进行数据加载

数据加载

LOAD DATA

将数据文件加载到表

LOAD DATA [LOCAL] INPATH 'path' INTO TABLE tbl [PARTITION(partition_key='partition_value')];	-- 指定分区可选

INSERT SELECT

将其它表数据,加载到目标表

INSERT (OVERWRITE | INTO) TABLE tbl [PARTITION(partition_key='partition_value')] 		-- 指定分区,可选SELECT ... FROM ... [CLUSTER BY(col)];				-- 指定分桶列,可选

数据导出

INSERT OVERWRITE SELECT

INSERT OVERWRITE [LOCAL] DIRECTORY ‘path’ 				-- LOCAL可选,带LOCAL导出Linux本地,不带LOCAL导出到HDFS[ROW FORMAT DELIMITED FIELDS TERMINATED BY '']		-- 可选,自定义列分隔符SELECT ... FROM ...;

bin/hive

  • bin/hive -e 'sql' > export_filesql结果重定向到导出文件中
  • bin/hive -f 'sql_script_file' > export_filesql脚本执行的结果重定向到导出文件中

复杂类型

类型定义示例内含元素类型元素个数取元素可用函数
arrayarray<类型>如定义为array数据为:1,2,3,4,5单值,类型取决于定义动态,不限制array[数字序号] 序号从0开始size统计元素个数 array_contains判断是否包含指定数据
mapmap<key类型, value类型>如定义为:map<string, int>数据为:{’a’: 1, ‘b’: 2, ‘c’: 3}键值对,K-V,K和V类型取决于定义动态,不限制map[key] 取出对应key的valuesize统计元素个数array_contains判断是否包含指定数据 map_keys取出全部key,返回array map_values取出全部values,返回array
structstruct<子列名 类型, 子列名 类型…>如定义为:struct<c1 string, c2 int, c3 date>数据为:’a’, 1, ‘2000-01-01’单值,类型取决于定义固定,取决于定义的子列数量struct.子列名 通过子列名取出子列值暂无

数据查询的课堂SQL记录

基本查询

create database itheima;
use itheima;
CREATE TABLE itheima.orders (orderId bigint COMMENT '订单id',orderNo string COMMENT '订单编号',shopId bigint COMMENT '门店id',userId bigint COMMENT '用户id',orderStatus tinyint COMMENT '订单状态 -3:用户拒收 -2:未付款的订单 -1:用户取消 0:待发货 1:配送中 2:用户确认收货',goodsMoney double COMMENT '商品金额',deliverMoney double COMMENT '运费',totalMoney double COMMENT '订单金额(包括运费)',realTotalMoney double COMMENT '实际订单金额(折扣后金额)',payType tinyint COMMENT '支付方式,0:未知;1:支付宝,2:微信;3、现金;4、其他',isPay tinyint COMMENT '是否支付 0:未支付 1:已支付',userName string COMMENT '收件人姓名',userAddress string COMMENT '收件人地址',userPhone string COMMENT '收件人电话',createTime timestamp COMMENT '下单时间',payTime timestamp COMMENT '支付时间',totalPayFee int COMMENT '总支付金额'
) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';load data local inpath '/home/hadoop/itheima_orders.txt' into table itheima.orders;CREATE TABLE itheima.users (userId int,loginName string,loginSecret int,loginPwd string,userSex tinyint,userName string,trueName string,brithday date,userPhoto string,userQQ string,userPhone string,userScore int,userTotalScore int,userFrom tinyint,userMoney double,lockMoney double,createTime timestamp,payPwd string,rechargeMoney double
) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';load data local inpath '/home/hadoop/itheima_users.txt' into table itheima.users;-- 查询全表数据
SELECT * FROM itheima.orders;-- 查询单列信息
SELECT orderid, userid, totalmoney FROM itheima.orders o ;-- 查询表有多少条数据
SELECT COUNT(*) FROM itheima.orders;-- 过滤广东省的订单
SELECT * FROM itheima.orders WHERE useraddress LIKE '%广东%';-- 找出广东省单笔营业额最大的订单
SELECT * FROM itheima.orders WHERE useraddress LIKE '%广东%'
ORDER BY totalmoney DESC LIMIT 1;-- 统计未支付、已支付各自的人数
SELECT ispay, COUNT(*) FROM itheima.orders o GROUP BY ispay ;-- 在已付款的订单中,统计每个用户最高的一笔消费金额
SELECT userid, MAX(totalmoney) FROM itheima.orders WHERE ispay = 1 GROUP BY userid;
-- 统计每个用户的平均订单消费额
SELECT userid, AVG(totalmoney) FROM itheima.orders GROUP BY userid;
-- 统计每个用户的平均订单消费额,并过滤大于10000的数据
SELECT userid, AVG(totalmoney) AS avg_money FROM itheima.orders GROUP BY userid HAVING avg_money > 10000;-- 订单表和用户表JOIN 找出用户username
SELECT o.orderid, o.userid, u.username FROM itheima.orders o JOIN itheima.users u ON o.userid = u.userid;
SELECT o.orderid, o.userid, u.username FROM itheima.orders o LEFT JOIN itheima.users u ON o.userid = u.userid;

RLIKE

image-20230224234706719

image-20230224234719463

image-20230224234733895

-- 查找广东省数据
SELECT * FROM itheima.orders WHERE useraddress RLIKE '.*广东.*';
-- 查找用户地址是:xx省 xx市 xx区
SELECT * FROM itheima.orders WHERE useraddress RLIKE '..省 ..市 ..区';
-- 查找用户姓为:张、王、邓
SELECT * FROM itheima.orders WHERE username RLIKE '[张王邓]\\S+';
-- 查找手机号符合:188****0*** 规则
SELECT * FROM itheima.orders WHERE userphone RLIKE '188\\S{4}0[0-9]{3}';

UNION联合

CREATE TABLE itheima.course(
c_id string, 
c_name string, 
t_id string)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';LOAD DATA LOCAL INPATH '/home/hadoop/course.txt' INTO TABLE itheima.course;
-- 基础UNION
SELECT * FROM itheima.course WHERE t_id = '周杰轮'UNION
SELECT * FROM itheima.course WHERE t_id = '王力鸿';
-- 去重演示
SELECT * FROM itheima.courseUNION
SELECT * FROM itheima.course;
-- 不去重
SELECT * FROM itheima.courseUNION ALL
SELECT * FROM itheima.course;
-- UNION写在FROM中 UNION写在子查询中
SELECT t_id, COUNT(*) FROM 
(SELECT * FROM itheima.course WHERE t_id = '周杰轮'UNION ALLSELECT * FROM itheima.course WHERE t_id = '王力鸿' 
) AS u GROUP BY t_id;-- 用于INSERT SELECT
INSERT OVERWRITE TABLE itheima.course2
SELECT * FROM itheima.course UNION
SELECT * FROM itheima.course;

Sampling采样

# 随机桶抽取, 分配桶是有规则的
# 可以按照列的hash取模分桶
# 按照完全随机分桶
-- 其它条件不变的话,每一次运行结果一致
select username, orderId, totalmoney FROM itheima.orders tablesample(bucket 3 out of 10 on username);-- 完全随机,每一次运行结果不同
select * from itheima.orders tablesample(bucket 3 out of 10 on rand());# 数据块抽取,按顺序抽取,每次条件不变,抽取结果不变
-- 抽取100条
select * from itheima.orderstablesample(100 rows);-- 取1%数据
select * from itheima.orderstablesample(1 percent);-- 取 1KB数据
select * from itheima.orderstablesample(1K);

虚拟列

虚拟列是Hive内置的可以在查询语句中使用的特殊标记,可以查询数据本身的详细参数。

Hive目前可用3个虚拟列:

- INPUT__FILE__NAME,显示数据行所在的具体文件
- BLOCK__OFFSET__INSIDE__FILE,显示数据行所在文件的偏移量
- ROW__OFFSET__INSIDE__BLOCK,显示数据所在HDFS块的偏移量此虚拟列需要设置:SET hive.exec.rowoffset=true 才可使用
SET hive.exec.rowoffset=true;SELECT orderid, username, INPUT__FILE__NAME, BLOCK__OFFSET__INSIDE__FILE, ROW__OFFSET__INSIDE__BLOCK FROM itheima.orders;SELECT *, BLOCK__OFFSET__INSIDE__FILE FROM itheima.orders WHERE BLOCK__OFFSET__INSIDE__FILE < 1000;SELECT orderid, username, INPUT__FILE__NAME, BLOCK__OFFSET__INSIDE__FILE, ROW__OFFSET__INSIDE__BLOCK FROM itheima.orders_bucket;SELECT INPUT__FILE__NAME, COUNT(*) FROM itheima.orders_bucket GROUP BY INPUT__FILE__NAME;

函数

数值、集合、转换、日期函数

-- 查看所有可用函数
show functions;
-- 查看函数使用方式
describe function extended count;
-- 数值函数
-- round 取整,设置小数精度
select round(3.1415926);		-- 取整(四舍五入)
select round(3.1415926, 4);		-- 设置小数精度4位(四舍五入)
-- 随机数
select rand();					-- 完全随机
select rand(3);					-- 设置随机数种子,设置种子后每次运行结果一致的
-- 绝对值
select abs(-3);
-- 求PI
select pi();-- 集合函数
-- 求元素个数
select size(work_locations) from test_array;
select size(members) from test_map;
-- 取出map的全部key
select map_keys(members) from test_map;
-- 取出map的全部value
select map_values(members) from test_map;
-- 查询array内是否包含指定元素,是就返回True
select * from test_array where ARRAY_CONTAINS(work_locations, 'tianjin');
-- 排序
select *, sort_array(work_locations) from test_array;-- 类型转换函数
-- 转二进制
select binary('hadoop');
-- 自由转换,类型转换失败报错或返回NULL
select cast('1' as bigint);-- 日期函数
-- 当前时间戳
select current_timestamp();
-- 当前日期
select current_date();
-- 时间戳转日期
select to_date(current_timestamp());
-- 年月日季度等
select year('2020-01-11');
select month('2020-01-11');
select day('2020-01-11');
select quarter('2020-05-11');
select dayofmonth('2020-05-11');
select hour('2020-05-11 10:36:59');
select minute('2020-05-11 10:36:59');
select second('2020-05-11 10:36:59');
select weekofyear('2020-05-11 10:36:59');
-- 日期之间的天数
select datediff('2022-12-31', '2019-12-31');
-- 日期相加、相减
select date_add('2022-12-31', 5);
select date_sub('2022-12-31', 5);

社交案例操作SQL

准备数据

-- 创建数据库
create database db_msg;
-- 选择数据库
use db_msg;-- 如果表已存在就删除
drop table if exists db_msg.tb_msg_source ;
-- 建表
create table db_msg.tb_msg_source(msg_time string comment "消息发送时间",sender_name string comment "发送人昵称",sender_account string comment "发送人账号",sender_sex string comment "发送人性别",sender_ip string comment "发送人ip地址",sender_os string comment "发送人操作系统",sender_phonetype string comment "发送人手机型号",sender_network string comment "发送人网络类型",sender_gps string comment "发送人的GPS定位",receiver_name string comment "接收人昵称",receiver_ip string comment "接收人IP",receiver_account string comment "接收人账号",receiver_os string comment "接收人操作系统",receiver_phonetype string comment "接收人手机型号",receiver_network string comment "接收人网络类型",receiver_gps string comment "接收人的GPS定位",receiver_sex string comment "接收人性别",msg_type string comment "消息类型",distance string comment "双方距离",message string comment "消息内容"
);-- 上传数据到HDFS(Linux命令)
hadoop fs -mkdir -p /chatdemo/data
hadoop fs -put chat_data-30W.csv /chatdemo/data/-- 加载数据到表中,基于HDFS加载
load data inpath '/chatdemo/data/chat_data-30W.csv' into table tb_msg_source;-- 验证数据加载
select * from tb_msg_source tablesample(100 rows);
-- 验证一下表的数量
select count(*) from tb_msg_source;

ETL清洗转换

create table db_msg.tb_msg_etl(msg_time string comment "消息发送时间",sender_name string comment "发送人昵称",sender_account string comment "发送人账号",sender_sex string comment "发送人性别",sender_ip string comment "发送人ip地址",sender_os string comment "发送人操作系统",sender_phonetype string comment "发送人手机型号",sender_network string comment "发送人网络类型",sender_gps string comment "发送人的GPS定位",receiver_name string comment "接收人昵称",receiver_ip string comment "接收人IP",receiver_account string comment "接收人账号",receiver_os string comment "接收人操作系统",receiver_phonetype string comment "接收人手机型号",receiver_network string comment "接收人网络类型",receiver_gps string comment "接收人的GPS定位",receiver_sex string comment "接收人性别",msg_type string comment "消息类型",distance string comment "双方距离",message string comment "消息内容",msg_day string comment "消息日",msg_hour string comment "消息小时",sender_lng double comment "经度",sender_lat double comment "纬度"
);INSERT OVERWRITE TABLE db_msg.tb_msg_etl
SELECT *, DATE(msg_time) AS msg_day, HOUR(msg_time) AS msg_hour, SPLIT(sender_gps, ',')[0] AS sender_lng, SPLIT(sender_gps, ',')[1] AS sender_lat
FROM db_msg.tb_msg_source
WHERE LENGTH(sender_gps) > 0;

指标计算

需求1

--保存结果表
CREATE TABLE IF NOT EXISTS tb_rs_total_msg_cnt 
COMMENT "每日消息总量" AS 
SELECT msg_day, COUNT(*) AS total_msg_cnt 
FROM db_msg.tb_msg_etl 
GROUP BY msg_day;

需求2

--保存结果表
CREATE TABLE IF NOT EXISTS tb_rs_hour_msg_cnt 
COMMENT "每小时消息量趋势" AS  
SELECT  msg_hour, COUNT(*) AS total_msg_cnt, COUNT(DISTINCT sender_account) AS sender_user_cnt, COUNT(DISTINCT receiver_account) AS receiver_user_cnt
FROM db_msg.tb_msg_etl GROUP BY msg_hour;

需求3

CREATE TABLE IF NOT EXISTS tb_rs_loc_cnt
COMMENT '今日各地区发送消息总量' AS 
SELECT msg_day,  sender_lng, sender_lat, COUNT(*) AS total_msg_cnt 
FROM db_msg.tb_msg_etl
GROUP BY msg_day, sender_lng, sender_lat;

需求4

--保存结果表
CREATE TABLE IF NOT EXISTS tb_rs_user_cnt
COMMENT "今日发送消息人数、接受消息人数" AS
SELECT 
msg_day, 
COUNT(DISTINCT sender_account) AS sender_user_cnt, 
COUNT(DISTINCT receiver_account) AS receiver_user_cnt
FROM db_msg.tb_msg_etl
GROUP BY msg_day;

需求5

--保存结果表
CREATE TABLE IF NOT EXISTS db_msg.tb_rs_s_user_top10
COMMENT "发送消息条数最多的Top10用户" AS
SELECT sender_name AS username, COUNT(*) AS sender_msg_cnt 
FROM db_msg.tb_msg_etl 
GROUP BY sender_name 
ORDER BY sender_msg_cnt DESC 
LIMIT 10;

需求6

CREATE TABLE IF NOT EXISTS db_msg.tb_rs_r_user_top10
COMMENT "接收消息条数最多的Top10用户" AS
SELECT 
receiver_name AS username, 
COUNT(*) AS receiver_msg_cnt 
FROM db_msg.tb_msg_etl 
GROUP BY receiver_name 
ORDER BY receiver_msg_cnt DESC 
LIMIT 10;

需求7

CREATE TABLE IF NOT EXISTS db_msg.tb_rs_sender_phone
COMMENT "发送人的手机型号分布" AS
SELECT sender_phonetype, COUNT(sender_account) AS cnt 
FROM db_msg.tb_msg_etl 
GROUP BY sender_phonetype;

需求8

--保存结果表
CREATE TABLE IF NOT EXISTS db_msg.tb_rs_sender_os
COMMENT "发送人的OS分布" AS
SELECTsender_os, COUNT(sender_account) AS cnt 
FROM db_msg.tb_msg_etl 
GROUP BY sender_os

Hive列注释、表注释等乱码解决方案

-- 在Hive的MySQL元数据库中执行
use hive;1).修改字段注释字符集alter table COLUMNS_V2 modify column COMMENT varchar(256) character set utf8;
2).修改表注释字符集alter table TABLE_PARAMS modify column PARAM_VALUE varchar(4000) character set utf8;
3).修改分区表参数,以支持分区键能够用中文表示alter table PARTITION_PARAMS modify column PARAM_VALUE varchar(4000) character set utf8;
alter table PARTITION_KEYS modify column PKEY_COMMENT varchar(4000) character set utf8;
4).修改索引注解mysql>alter table INDEX_PARAMS modify column PARAM_VALUE varchar(4000) character set utf8;

COUNT(sender_account) AS cnt
FROM db_msg.tb_msg_etl
GROUP BY sender_phonetype;

需求8```sql
--保存结果表
CREATE TABLE IF NOT EXISTS db_msg.tb_rs_sender_os
COMMENT "发送人的OS分布" AS
SELECTsender_os, COUNT(sender_account) AS cnt 
FROM db_msg.tb_msg_etl 
GROUP BY sender_os

Hive列注释、表注释等乱码解决方案

-- 在Hive的MySQL元数据库中执行
use hive;1).修改字段注释字符集alter table COLUMNS_V2 modify column COMMENT varchar(256) character set utf8;
2).修改表注释字符集alter table TABLE_PARAMS modify column PARAM_VALUE varchar(4000) character set utf8;
3).修改分区表参数,以支持分区键能够用中文表示alter table PARTITION_PARAMS modify column PARAM_VALUE varchar(4000) character set utf8;
alter table PARTITION_KEYS modify column PKEY_COMMENT varchar(4000) character set utf8;
4).修改索引注解mysql>alter table INDEX_PARAMS modify column PARAM_VALUE varchar(4000) character set utf8;

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/418719.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python-基础篇-数据结构-列表、元组、字典、集合

文章目录 思维导图❓ 大抵是何物数据结构切片 &#x1f4ac;具体是何物列表&#x1f4bb; list&#x1f4bb; [ ]自我介绍精神面貌使用说明生理体征增删查改 方法汇总 元组&#x1f4bb; tuple&#x1f4bb; ( )自我介绍使用说明精神面貌生理体征增删查改 字典&#x1f4bb; di…

第三课:GPT

文章目录 第三课&#xff1a;GPT1、学习总结&#xff1a;GPT出现的原因GPT的方法原理目前存在的问题无监督的预训练优化目标模型结构 监督微调课程ppt及代码地址 2、学习心得&#xff1a;3、经验分享&#xff1a;4、课程反馈&#xff1a;5、使用MindSpore昇思的体验和反馈&…

qt学习:QT对话框+颜色+文件+字体+输入

目录 概述 继承图 QColorDialog 颜色对话框 QFileDialog 文件对话框 保存文件对话框 QFontDialog 字体对话框 QInputDialog 输入对话框 概述 对于对话框的功能&#xff0c;在GUI图形界面开发过程&#xff0c;使用是非常多&#xff0c;那么Qt也提供了丰富的对话框类QDia…

前端实现贪吃蛇功能

大家都玩过贪吃蛇小游戏&#xff0c;控制一条蛇去吃食物&#xff0c;然后蛇在吃到食物后会变大。本篇博客将会实现贪吃蛇小游戏的功能。 1.实现效果 2.整体布局 /*** 游戏区域样式*/ const gameBoardStyle {gridTemplateColumns: repeat(${width}, 1fr),gridTemplateRows: re…

【极光系列】springBoot集成elasticsearch

【极光系列】springBoot集成elasticsearch 一.gitee地址 直接下载解压可用 https://gitee.com/shawsongyue/aurora.git 模块&#xff1a;aurora_elasticsearch 二.windows安装elasticsearch tips&#xff1a;注意es客户端版本要与java依赖版本一致&#xff0c;目前使用7.6…

python开发之远程开发工具对比

前言 除了本地开发外&#xff0c;还有一种常见的开发方式就是远程开发&#xff0c;一般情况是一台Windows或mac笔记本作为日常使用的电脑&#xff0c;另有一台linux服务器作为开发服务器。开发服务器的性能往往较强&#xff0c;这样远程开发的方式一方面可以让我们在习惯的系统…

yum下载源,vim使用

文章目录 yum本地配置lzrsz命令行互传scp(远程拷贝)vim yum本地配置 [rootiZf8z3j2ckkap6ypn717msZ ~]# pwd /root [rootiZf8z3j2ckkap6ypn717msZ ~]# ls /etc/yum.repos.d CentOS-Base.repo epel.repo //本地配置源yum会根据/etc/yum.repo.d路径下的配置文件来构成自己的下载…

【设计模式】文件目录管理是组合模式吗?

组合模式是什么&#xff1f; 组合模式是一种将对象组合成树形结构以表示"部分-整体"的层次结构的设计模式。它使得用户对单个对象和组合对象的使用具有一致性。 组合模式在什么情况下使用&#xff1f; 当你发现你需要在代码中实现树形数据结构&#xff0c;让整体-部…

Spring Boot 3.2.2整合MyBatis-Plus 3.5.5依赖不兼容问题

问题演示 导依赖 当你启动项目就会 抛出该异常 java.lang.IllegalArgumentException: Invalid value type for attribute factoryBeanObjectType: java.lang.String 问题原因 mybatis-plus 中 mybatis 的整合包版本不够导致的 解决方案 排除掉mybatis-plus 中 mybatis 的整合…

Autosar PRport 在Simulink中的使用

文章目录 前言模型及Autosar接口配置Autosar接口模型接口 生成代码分析总结 前言 在之前使用Simulink开发Autosar模型时&#xff0c;大部分使用的RTE接口都是Sender or Receiver接口。但如果是对于那些具有存储需求的接口来说&#xff0c;一个sender接口需要有另外一个receive…

list列表可编辑状态

有时候list需要修改或选择属性,mfc自带的只能显示内容,基本上是不可以修改,为了实现这个功能需求,需要完成一下步骤转换. 第一步记录选择的单元格. 第二步创建一个编辑框CComboBox对象, 设置字体,窗口属性. 第三步获取选中单元格的位置信息. 第四步获取单元格内容信息. 第五步…

SpringMVC下半篇之整合ssm

4.ssm整合 4.1.创建表 CREATE TABLE account (id int(11) NOT NULL AUTO_INCREMENT,name varchar(20) DEFAULT NULL,money double DEFAULT NULL,PRIMARY KEY (id) ) ENGINEInnoDB DEFAULT CHARSETutf8;4.2.创建工程 4.3.pom.xml <?xml version"1.0" encoding&…