【Gene Expression Prediction】Part1 基因表达数据的获取与分析

文章目录

  • Gene Expression Prediction
  • 1. Intro
  • 2. Up-sampling
  • 3. Compressive sensing
  • 3.5 Predicting Reporter Expression from Chromatin Features
  • 4. Predicting splicing from sequence

来自Manolis Kellis教授(MIT计算生物学主任)的课
YouTube:(Gene Expression Prediction - Lecture 09 - Deep Learning in Life Sciences (Spring 2021)
Slides: slides
本节课分为四个部分,本篇笔记是第一部分。
本节主要是介绍如何获得和分析基因表达数据。主要是为了后面的三个讲座铺垫。首先,探讨不同的方法和技术来获取基因表达数据。之后学习如何分析这些数据,包括上采样方法来解决数据不平衡问题,以及压缩感知技术来处理高维数据。最后,我们会讨论如何预测RNA剪接。

Gene Expression Prediction

  1. 介绍(Intro):
    • 这部分可能会介绍基因表达的基础知识、无监督学习的概念以及聚类技术。
  2. 上采样(Up-sampling):
    • 讨论如何从已知的1000个基因的表达数据预测大约20,000个基因的表达水平,这可能涉及到机器学习技术和统计推断。
  3. 压缩感知(Compressive sensing):
    • 探讨如何使用压缩感知技术从综合测量中预测基因表达,这是一种能够从少量观测数据中重建未知信号的技术。
  4. DeepChrome+LSTMs:
    • 介绍一种结合了深度学习(DeepChrome模型)和长短期记忆网络(LSTMs)的方法来预测染色质数据中的基因表达。
  5. 预测剪接从序列(Predicting splicing from sequence):
    • 说明如何使用成千上万的特征从DNA序列预测剪接事件,剪接是基因表达调控的一个关键过程。
  6. 客座讲座:Flynn Chen, Mark Gerstein实验室, 耶鲁大学:
    • Flynn Chen将讨论如何从染色质特征预测报告基因的表达。
  7. 客座讲座:Xiaohui Xie, 加州大学欧文分校:
    • Xiaohui Xie将讲述如何从部分子集抽样预测基因表达,以及如何进行多组学整合的表示学习。
  8. 客座讲座:Kyle Kai-How Farh, Illumina:
    • Kyle Kai-How Farh将探讨如何从序列预测剪接。

1. Intro

在另一篇博客中:基因表达分析聚类&分析

2. Up-sampling

基因表达测量方面的"up-sampling"。其中两个应用:数字信号放大(Digital signal upscaling)和图像放大(Image up-scaling)

在CV中,上采样是指从低分辨率变成高分辨率,还原更多图像上的细节

在生信中,上采样是指利用少量的基因表达数据来推测整个基因组的表达模式(从已知的1000个基因的表达数据预测大约20,000个基因的表达水平)

  1. 数字信号放大:

    • 这通常涉及使用插值低通滤波器(例如有限脉冲响应FIR滤波器)来增加信号的采样率。

    • 目的是从较低维度的信号中捕捉到更高维度信号的特性。

    • 提及了Nyquist率,这是连续信号采样的最小速率,以避免失真。

  • L1000与RNA-seq对比
    • 目标
      • 通过测量1000个基因来推断剩余的基因表达。
      • 这种方法快速、便宜,且可以应用于数百万种条件。
    • 如何选择哪1000个基因进行测量
      • 使用“压缩感知”(Compressed Sensing)技术,测量基因的某些组合,从而更好地捕捉到高维数据
  1. 图像放大

    • 这与卷积运算的逆运算(去卷积)有关,用于将分辨率较低的图像转换成高分辨率图像。

    • 这通常涉及从大量图像中学习的迁移学习。

    • 强调了从低维重投影到高维图像的过程。

  • 多个DL框架,用于增加图像的分辨率
    • Representation/abstract learning,让网络学习数据的压缩表示的方法,有利于任务如图像的压缩、去噪和上采样
  • 下面有很多模块,都是用于提升网络性能的
    • 如残差学习、递归学习、通道注意力、稠密连接等

  • 一个深度神经网络模型,D-GEX,用来预测基因表达的。

    • 一个多任务多层前馈神经网络,使用非线性激活函数(双曲正切函数)
    • 输入是943个“landmark”基因的表达数据,输出是预测的9520个目标基因的表达水平
  • 不管是在计算机视觉,还是在生物信息

    • 深度学习都表现的非常好

3. Compressive sensing

先是介绍了使用随机复合测量(Random Composite Measurements, RCMs)有效生成转录组档案(即基因表达数据)的概念和方法

  • 压缩感知(Compressed Sensing
  • :这是一种可以从少量观测数据中恢复出完整信号的技术。在这里,它被用来从复合测量中恢复出表达轮廓。
  • 随机复合测量(RCMs):这是指用随机的方式组合多个基因的表达数据,以减少必须进行的实际测量数量。
  • 推断基因模块活动:通过分析这些随机复合测量,可以推断出不同的基因模块(即一组共同表达的基因)是如何活动的。

从染色质信息预测基因表达

  • 染色质信息包括DNA甲基化、组蛋白修饰等因素,这些都可以影响基因的活性和表达
  • DNA甲基化与基因表达
    • 折线图展示了从转录起始位点(TSS)到转录终止位点(TES)的DNA甲基化水平,与基因表达水平的相关性。
    • 图中,在启动子区域(TSS附近),高甲基化水平与低基因表达水平相关;而在基因体中,甲基化水平则相对较低。
  • 右侧热图
    • 不同的细胞类型和相关的表观遗传标记
    • 每个细胞类型旁边有不同颜色的条形,代表了特定表观遗传特征(如某种特定的组蛋白修饰)的存在或缺失
  • 旨在展示如何使用表观遗传学数据(特别是DNA甲基化和组蛋白修饰)来预测不同细胞类型中的基因表达模式。通过分析这些信息,研究人员可以更好地理解基因如何在不同组织和发育阶段被调控。

探讨了强增强子(标记为H3K27ac)与弱增强子(仅标记为H3K4me1)在基因表达中的作用

  • 左下角:
    • 展示了在基因体周围(距离转录起始位点TSS上下约2kb的区域内)的不同表观遗传标记水平的变化。
    • 这些数据点代表了有强增强子存在(H3K27ac和H3K4me1均存在)的基因与没有增强子(距离TSS超过20kb)的基因之间的比较。
  • 右侧:
    • 直方图展示了基因表达的分布,使用对数转换的均值RPKM
    • 条形图展示了在基因表达的不同水平(从低到高)下,强增强子和弱增强子附近的基因比例
    • 在高表达基因区域周围,强增强子比例越高,类似是这样分析。
    • 揭示了不同表观遗传标记在调控基因活性方面的差异作用。可以更好的理解基因表达背后的表观遗传调控机制

在这里插入图片描述

这是这节课会听到的第一个客座讲座,后面会详细介绍

3.5 Predicting Reporter Expression from Chromatin Features

尽管我们能够通过比较序列分析、全基因组染色质/转录因子(TF)定位图以及遗传学等方法识别出大量可能的顺式调控元件,但我们仍然不清楚它们的具体功能和调控机制

以下是现代基因调控元件研究的进展的介绍

  • “bashing”——传统方法
    • 通常涉及将不同的调控元件克隆到报告基因(如荧光素酶或绿色荧光蛋白GFP)前面,并测试它们的活性。
    • 缺点
      • 生成/克隆个体变体非常耗时
      • 酶促/荧光报告器限制了多路复用
  • 大规模平行报告基因测定(MPRA
    • 测试成千上万的调控元件。MPRA的灵活性允许测试启动子、增强子、沉默子、RNA稳定性元件等。
  • 对某些基序(TF结合位点)的破坏是如何影响特定激活子和抑制子的功能的。
  • HiDRA(高清晰度报告基因测定)
    • HiDRA是一种高定义报告基因测定,具有以下几个关键特点:
      • 在单一实验中测试超过700万个片段。
      • 不需要合成、大小选择,可以测试长片段。
      • 选择可访问的DNA区域,获得高敏感性。
      • 3’UTR整合促进自我转录,避免了外源启动子的需要。

4. Predicting splicing from sequence

这里解释了如何使用已知的RNA序列特征和剪接代码来预测组织特异性剪接事件。

剪接是基因表达过程中的一个步骤,其中前体mRNA(pre-mRNA)中的内含子被移除,而外显子连接在一起形成成熟的mRNA。

组织特异性剪接是指在特定组织中发生的独特剪接模式。

  • 背景:这里三个外显子(exon1, exon2, exon3)。其中exon2是可选剪切,可以包含在成熟mRNA中也可以排除。
  • 为了预测剪接,定义了一组特征
    • motifs(已知的RNA结合蛋白结合位点)
    • 目标外显子
    • 相邻外显子的转录结构
  • 特征提取
  • splicing code是指决定特定外显子是否包含在成熟mRNA中的规则和模式
  • 预测模型是一个三分类模型,预测外显子是包括/排除/不确定。

这是第三个客座报告

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/421896.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【网站项目】基于SSM的273校园二手交易网站

🙊作者简介:多年一线开发工作经验,分享技术代码帮助学生学习,独立完成自己的项目或者毕业设计。 代码可以私聊博主获取。🌹赠送计算机毕业设计600个选题excel文件,帮助大学选题。赠送开题报告模板&#xff…

C++PythonC# 三语言OpenCV从零开发(6):边界填充+Csharp调用Python matplotlib代码

文章目录 相关链接前言测试图片边界填充pythonCCsharp错误代码Mat遍历最终代码和结果 总结 相关链接 C&Python&Csharp in OpenCV 专栏 【2022B站最好的OpenCV课程推荐】OpenCV从入门到实战 全套课程(附带课程课件资料课件笔记) 前言 今天来接着…

【操作系统】实验二 Proc文件系统

🕺作者: 主页 我的专栏C语言从0到1探秘C数据结构从0到1探秘Linux 😘欢迎关注:👍点赞🙌收藏✍️留言 🏇码字不易,你的👍点赞🙌收藏❤️关注对我真的很重要&…

网络安全的信息收集方法有哪些?

网络安全攻击中的信息收集是攻击者为了了解目标系统的弱点、配置、环境和潜在的防御措施而进行的活动。以下是一些常见的信息收集手段: 开放网络资源查询: 使用搜索引擎查找关于目标组织的信息,包括新闻稿、社交媒体帖子、官方网站等。通过W…

【C++修行之道】竞赛常用库函数(sort,min和max函数,min_element和max_element、nth_element)

目录 一、sort 1.1sort简介 语法 参数 功能 适用容器 1.2sort的用法 1.3自定义比较函数 示例 1265蓝桥题 —— 排序 二、min和max函数 三、min_element和max_element 497蓝桥题 —— 成绩分析 四、nth_element 一、sort 1.1sort简介 sort函数包含在头文件<a…

用户洞察:精准解读用户的真实需求!

洞察用户需求的过程和谈恋爱一样。你不能简简单单地问客户&#xff0c;你想要什么&#xff1f;你有什么痛点&#xff1f;这样的问法是无法得到任何有价值的信息。这就好比谈恋爱的场景&#xff0c;如果你问对方想吃什么&#xff0c;大概率会得到“随便”“都行”这类的答案&…

计算机网络学习first day

In the first day.  首先&#xff0c;我们要先有清晰地学习思路&#xff0c;然后介绍计算机网络的发展及在信息时代的各类应用及带来的一些负面问题。然后是对因特网进行概述&#xff0c;包括网络&#xff0c;互联网和因特网的相关概念&#xff0c;因特网发展的三个历史阶段&a…

python opencv 图片缺陷检测(讲解直方图以及相关系数对比法)

一、利用直方图的方式进行批量的图片缺陷检测&#xff08;方法简单&#xff09; 二、步骤&#xff08;完整代码见最后&#xff09; 2.1灰度转换&#xff08;将原图和要检测对比的图分开灰度化&#xff09; 灰度化的作用是因为后面的直方图比较需要以像素256为基准进行相关性比…

RabbitMQ的安装使用

RabbitMQ是什么&#xff1f; MQ全称为Message Queue&#xff0c;消息队列&#xff0c;在程序之间发送消息来通信&#xff0c;而不是通过彼此调用通信。 RabbitMQ 主要是为了实现系统之间的双向解耦而实现的。当生产者大量产生数据时&#xff0c;消费者无法快速消费&#xff0c;…

基于SpringBoot的SSM整合案例

项目目录: 数据库表以及表结构 user表结构 user_info表结构 引入依赖 父模块依赖: <parent><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-parent</artifactId><version>2.2.12.RELEASE</version>…

Conmi的正确答案——eclipse C/C++显示“未解析的包含:<xxx.h>”/“Unresolved inclusion: <xxx.h>”

eclipse IDE 版本&#xff1a;2023-12 部分采自&#xff1a;解决方法&#xff1a;关于问题 “C - Unresolved inclusion: <iostream>” 解释事项&#xff1a;方法一可能版本不同&#xff0c;部分界面修改了。这里使用的是方法二的解决方法。&#xff08;或者各位大神的描…

最新多线程版 FFmpeg 剖析

FFmpeg近期推出了一个重要Feature&#xff0c;即将原来的 FFmpeg 命令行工具由单线程变成了多线程。 ffmpeg -i input.mp4 -c:v libx264 -crf 23 out.mp4 如上面的命令&#xff0c;以前使用上面命令进行转码时&#xff0c;由于它是单线程工作模式&#xff0c;因此只能利用一个…