Python 算法交易实验67 第一次迭代总结

说明

在这里对第一次迭代(2023.7~ 2024.1)进行一些回顾和总结:

回顾:

  • 1 实现了0~1的变化
  • 2 在信息隔绝的条件下,无控制的操作,导致被套

总结:

思路可行,在春暖花开的时候,迭代完一版,应该可以取得不错的结果。

内容

1 失败分析

第一次迭代最后的失败的主因还是因为急功近利的心理,然后不受约束的开始买入,导致被套。我认为市场大跌并不会有这种后果:因为模型分已经知道市场不是一个很好的状态。

主要是主观的想象力,认为要出现V字反转,抱有侥幸心理的操作,从而导致被套的局面。

客观上一个很大的原因是因为在项目中不允许使用电脑和手机,本质上已经脱离了数据决策的基本环境(目前V1的系统,没有自动化的决策支持)。正是孙子兵法说的:乱军引胜。

故君之所以患于军者三:不知军之不可可以进而谓之进,不知军之不可以退而谓之退,是谓縻军;不知三军之事,而同军之政者,则军士惑矣;不知三军之权,而同三军之任,则军士疑矣。三军既惑且疑,则诸侯之难至矣,是谓乱军引胜。

主观上有两个错误,第一个错误是最根本的错误,无限放大了主观决策的权力;第二个错误没有将交易当成一个严肃的business,没有全局的资金计划和风控。

2 改进计划

要避免再次犯错误,必须立规矩,并约定好流程,形成习惯。

虽然我不太喜欢走流程,但是不得不承认,对于关键的决策,遵循流程(尽量短)是必要的。

假设我自己就是一家公司,有一定的原始资金,作为公司的CEO会怎么决定,站在股东的角度又会怎样挑刺,从而形成一套具有约束性的规范。

在寻求利益的稳定和最大化之前具有矛盾,在控制运行风险与利益最大化之间也有矛盾,可以先设置一些合理的规范,然后程序化,设置一个顶层的控制对象,来确保公司的整体运营平稳。

业务的核心逻辑很简单,具有资金,根据实时数据进行判断,作出投资决策。业务的本质类似于信贷:市场行情作为一个虚拟人,在每个时刻向公司申请(无抵押)贷款,公司根据其信用评分作出放贷决定。一笔成功的放贷会在指定的一段时间内获取一定的收益,可能是半个点到十几个点,试不同的类型决定;一旦失败,本金将会损失流动性,或者输掉几个点到几十个点。总体上,一个单子的损失是远大于收益的。

所以,获益的核心是尽量提升成功率,同时也尽量的提前识别并避免损失(减少错误,止损)。

就市场本身而言,其状态是复杂的。最简单的维度是大盘整体的指数点位,所以在不同的点位应当留有准备金。投资最大的风险是在一个区间段发生剧变,所以可以按时段,例如每个自然月限制允许投资的最大值。

如果机械的按照大盘点位和时间划分成网格的话,风险虽然绝对控制了,但是由于资金的使用率过低,就会造成盈利效率过低的问题。

Topic1: 根据历史数据进行分析,明确是否可以简单的按月进行风险控制,例如,假设总资金60万,每个月投资上限是10万。

Assumption 1:市场行情的变化不会太持久,按较大的时隙(月)错开之后,资金不会被套。

平摊的周期越长,抗风险的能力越长,但是资金的盈利效率相应的也就降低了。等于只使用10万运营,每月如果盈利2%,年盈利则是24% ,按60万本金摊,那么才4%的年化。如果分为3股,那么就是8%,利益翻倍,风险也随之翻倍。

【月目标】低风险(6个月)的参考基准(无风险利率)是2%,中风险(3个月)的参考基准是1%

Topic2: 宏观判断,次月是否下跌。

每个月有投资授信上限,但是没有投资下限。这意味着,如果识别投资月处于下跌可能,可以减少投资额,甚至不投资。

从数学上考虑,这样是合理的。当下跌可能变大时,通常也会有上涨的可能,这些幅度通常都会比较大的。当这种剧变的概率高,那么降低投资额,从风险上显然是会有规避作用;即便从收益上看,也可以取得较为平均的结果。即:损失超额(下跌/上涨)而取其平均。

这样做是符合理想Business的设定的:一个稳定收益,随时间不断增长的的业务。这个稳定业务,年化收益是以无风险收益作为下限参考,20%作为及格线参考,50%作为风险控制的上限参考的。
也就是说,当收益超过50%时,会采取策略提高安全性,而不是继续追高收益。

【抓手】还得是报表。

同样地,我也不喜欢报表,但看起来在初期阶段,还是需要开发报表来完成管理职能。报表将用于宏观的决策:是否对策略、投资标的进行增删改?是否扩大或者缩小经营规模等。

临时分析:

  • 1 获取数据,按月计算统计
    在这里插入图片描述
  • 2 计算月均值的差

比较让人意外的是,月均值上涨的月份数竟然更多
在这里插入图片描述
最好是根据变号的方式来统计连续值的个数,所以从统计上看,最近连跌6个月是比较罕见的。所以,大概率月底会翻红,或者2月份。
在这里插入图片描述
按月来看,指数显示出了更好的统计特性:围绕均值为0上下波动。
在这里插入图片描述
从变异系数来看, 月波动一般都是1个点以上。
在这里插入图片描述
最近6个月的最大回撤约为14%,历史上的最大回撤约为38%,所以现在的行情也算是毛毛雨了。

回答最初的猜想:将资金分散到3个月投资是否可行。
在这里插入图片描述
总体的rolling,6个月风险会小很多:
在这里插入图片描述
最近24个月的rolling(所以恶劣情况下还是不太行的)
在这里插入图片描述
所以看起来,如果是简单投资,那么6个月的rolling是一个较好的选择。随之而来的问题是,有没有规律可以改善不同情况下的资金利用状态:是不均分的分布方式。

例如,在回撤已经特别大的时候,加大投资的授信额度,反之如果已经正向盈利较多,就减少最大授信额度(当月)。通过这种动态的授信方法,可以从宏观上控制风险。

当然,在具体的授信环节,模型本身也会具有风险识别的功能,这是一种自发的,业务性质的风控:当判断较为悲观时,交易会自发减少,这就会进一步避免错误的交易。

【结论】 初期还是以6个月为限比较合适,根据月最大回撤或最大升幅来动态调整月授信额度,最大可达50%。

所以,理论上2024.2可以是1.5倍月授信。

另外,可以约定每个标的每月的敞口不得大于当月授信总额的1/3。

每个月的收益及格线是5个点,良好得10个点。所以这个就有点难了,不过由于宏观控制了风险,所以单月的策略可以更激进。

单月额度 * 单月利润率 * 月份数 ÷ 2 ÷ 总额度

【估算】如果单月是5个点,那么一年大约是5个点,如果单月是10个点,那么一年大约就是10个点。

3 细节分析

3.1 回测对象的Bug

回测对象在运行时,其时隙的计算是错误的,虽然临时魔改修正了,但似乎还是有问题。这导致了持有周期的评估偏差。

这直接导致了最后信息传导时失效,前面所有的工作在这一步失败了,所以第一次迭代,最大的意义是打通关键环节,但并不足以作为生产。

3.2 信息缺失

之前主要考虑了短信通知的模板/字数限制,在大量的信息涌入时,已经完全分不清楚这个信息代表的交易,到底效果如何了。只能知道模型提出的买卖时点是否合理。

这起到了部分模型验证的作用,但也没有达到生产级。

3.3 建模方法

最初的模型只考虑盈利,这是不对的,至少不完全对。盈利模型更可能是双刃剑,但是也存在帕累托的可能。前者对于稳定运营的意义不大,所以一迭真是做了个寂寞。

追寻帕累托,至少是避险模型才是对的。

4 第二次迭代的推进目标

4.1 新BT(BackTesting)

这将是控制力更强,更可靠的工具。

设计上的改变:

  • 1 记录级对象(Rec Class )。这会确保控制的灵活性,特别是在debug上,非常精细。另外,未来这些将与数据库结合,仍然可以并行处理(群啸)。
  • 2 FlipFlop。对象的执行将分为计算元数据与数据两个固定步骤,元数据将决定状态,状态将影响数据的执行。
  • 3 Block吞吐。所有的数据执行将以Block作为单位进行吞吐,这个或许是影响最大的程序改变。

首先,原来的UCS设计是面向空间,或者说是日志型的。一个空间下,或者没有数据时间,或者有度量单位不一的多个标的的数据时间。现在将按照时间轴进行主数据合并,称为TBDB(Time-Based DataBase)。这意味着按照时间轴优先,然后去合并不同空间下的数据。每个空间在时间轴上的数据都是唯一的。TBDB是时序数据库的概念,其空间维度的拓展可以由其他的UCS而来。UCS由shard, part和block三个层级,以及项目名称构成唯一识别标志。例如, project_000.part_000.block_000 ~ task_id ,这个规范足以支撑千亿级别的数据。

Note: TBDB在存储格式上实际上也是UCS的,只不过task_id是时隙,block就是时间块了。

其次,每个worker将不直接从数据库请求数据,而是向Block Manager发出取数请求,BM会根据请求进行取数,这将带来很多好处。

  • a 减少不必要的数据库压力或磁盘吞吐。如果有n个worker在请求同样数据时,不会重复从数据库/磁盘取,而是从内存中取。多个worker是几乎一定会发生的事。
  • b 预取数。当worker处于历史回测状态时,BM可以预先将需要的后续block取好放在内存中,这样worker就不需要停等。
  • c 增强了数据规范,便于更大规模协同。由于数据的需求变成了离散化的块需求,即使通过文件系统也很容易进行协同。这将为使用拓展算力提供良好的基础。

4.2 前端

情况更清晰,辅助操作的能力更强

通过表格和其他前端技术实现:

  • 1 实现每月的资金使用、利润及订单报表。这样可以贯彻宏观的资金控制,并对交易进行细致的控制,用于迭代。
  • 2 订单的交易明细表设计。务求信息简洁且完整,足以让我第一时间信赖它,作出交易决定。
  • 3 消息列表设计。SMS将不提供明细,而是提供一个id号,在 前端提供完整的交易信息。

回测对象会生成Order对象

Order对象会在前端显示,从订单开始,手机用户的反馈。如果用户没有在合适的机会响应订单,订单将会关闭。

订单对象负责收集用户的反馈和交互,所以会在前端进行合理的展示。具有总分的特质,在外层显示基本信息,点进去可以显示详细信息。

特征将处理到若干表,所以在提取这些特征进行建模和分析时,需要async请求,要观察这些async是否会错乱。

要按时间建立主表,基于这些主表建立报表

4.3 建模方法

采用风险模型 + 固定利率的交易

在能够有效控制双刃剑/帕累托模型之前,将使用风险模型,以传统信贷模型的方式给出交易信号。并按照固定利率的交易方式触发交易。

以每单毛利 1%, 2% 建立日频的交易策略进行实验(A卡),之后在交易过程中进行追踪(B卡 ),最后对失败的订单进行清算(C卡)。

初期可以简化为A卡买入,在指定周期达标抛售,或者到期强制卖出。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/421953.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【5G 接口协议】N2接口协议NGAP(NG Application Protocol)介绍

博主未授权任何人或组织机构转载博主任何原创文章,感谢各位对原创的支持! 博主链接 本人就职于国际知名终端厂商,负责modem芯片研发。 在5G早期负责终端数据业务层、核心网相关的开发工作,目前牵头6G算力网络技术标准研究。 博客…

AI企业知识库:企业智慧之源,引领未来发展

AI企业知识库作为优秘智能的核心技术(shuziren06),具有许多引人注目的功能和特点。接下来让我们深入探讨一下AI企业知识库如何在实际应用中助力企业。以下是对AI企业知识库的更详细介绍: 1. 强大的知识整合能力 AI企业知识库能够…

如何搭建MariaDB并实现无公网ip环境远程连接本地数据库

🌈个人主页: Aileen_0v0 🔥热门专栏: 华为鸿蒙系统学习|计算机网络|数据结构与算法 ​💫个人格言:“没有罗马,那就自己创造罗马~” 文章目录 1. 配置MariaDB数据库1.1 安装MariaDB数据库1.2 测试局域网内远程连接 2. 内网穿透2.1 创建隧道映射…

找不到msvcr100dll或msvcr100dll丢失怎么办,5种靠谱的解决方法分享

MSVCR100.dll文件的丢失可能会引发一系列系统运行和应用程序功能上的问题。作为Microsoft Visual C运行库中的一个关键动态链接库文件,它的缺失会导致依赖于此文件的软件无法正常启动或执行预期功能。具体表现可能包括但不限于:应用程序崩溃、闪退&#…

XHCMS靶场小记(熊海)

文件包含漏洞 通过url判断文件包含漏洞(参数直接引入文件) 发现文件包含漏洞可以先尝试php伪协议进行命令执行(php://input或者data://text/plain); 发现allow_url_include参数应该没开启;那么寻找文件上传点上传图…

如何本地安装Python Flask并结合内网穿透实现远程开发

💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

冒泡排序-BubbleSort

1、基本思路 从数组的左边开始,比较两个元素的大小,当左边大于右边时,更换左右元素位置,否则不改变;接着向右移动一步,比较第二个元素和第三个元素的大小,重复上述操作,直到最后一个…

ELK 分离式日志(1)

目录 一.ELK组件 ElasticSearch: Kiabana: Logstash: 可以添加的其它组件: ELK 的工作原理: 二.部署ELK 节点都设置Java环境: 每台都可以部署 Elasticsearch 软件: 修改elasticsearch主配置文件&…

<信息安全>《1 国内主要企业网络安全公司概览(一)》

1 深信服科技股份有限公司 信息内容LOGO成立日期2000年12月25日成立。总部深圳市南山区学苑大道1001号南山智园A1栋是否上市深信服[300454]A股市值265亿主要产品企业级网络安全云计算IT基础设施数据通信物联网员工规模9000人分支机构全球50多个荣誉国家级高新技术企业、中国软…

基于深度学习的细胞感染性识别与判定

基于深度学习的细胞感染性识别与判定 基于深度学习的细胞感染性识别与判定引言项目背景项目意义项目实施数据采集与预处理模型选择与训练模型评估与优化 结果与展望结论 基于深度学习的细胞感染性识别与判定 引言 随着深度学习技术的不断发展,其在医学图像处理领域…

asp.net mvc framework 4.8 升级到 net 8.0

首先仔细阅读官方给出的升级文档这是地址 简介 - Training | Microsoft Learn 跟据文档中的操作升级 升级之后可能会有大量报错,将报错都改好,运行 如果能正常运行起来那么恭喜你,一般是会有问题 我遇到的问题是项目启动不了&#xff0c…

使用Rancher管理Kubernetes集群

部署前规划 整个部署包括2个部分,一是管理集群部署,二是k8s集群部署。管理集群功能主要提供web界面方式管理k8s集群。正常情况,管理集群3个节点即可,k8s集群至少3个。本文以3节点管理集群,3节点k8s集群为例 说明部署过…