一区优化直接写:KOA-CNN-BiLSTM-Attention开普勒优化卷积、长短期记忆网络融合注意力机制的多变量回归预测程序!

适用平台:Matlab 2023版及以上

KOA开普勒优化算法,于2023年5月发表在SCI、中科院1区Top顶级期刊《Knowledge-Based Systems》上。

该算法提出时间很短,目前还没有套用这个算法的文献。

同样的,我们利用该新鲜出炉的算法对我们的CNN-BiLSTM-Attention时序和空间特征结合-融合注意力机制的回归预测程序代码中的超参数进行优化,构成KOA-CNN-BiLSTM-Attention多变量回归预测模型.

这篇论文介绍了一种名为开普勒优化算法(Kepler optimization algorithm,KOA)的新型元启发式算法,并对其进行了评估。KOA算法受开普勒行星运动定律的启发,旨在解决连续优化问题。在KOA中,每个行星及其位置代表一个候选解,通过根据迄今为止的最佳解(太阳)进行随机更新来实现优化过程,从而更有效地探索和利用搜索空间。通过使用各种基准问题对KOA算法的性能进行评估,并与其他随机优化算法进行比较。结果表明,KOA在收敛性和统计数据方面优于其他优化器。

KOA的开普勒优化步骤主要包括初始化行星位置和速度、根据适应度函数评估每个行星的适应度、更新每个行星的位置和速度、更新最佳解(太阳)位置、重复执行更新步骤直到达到停止条件等。这些步骤使得KOA能够在优化过程中更好地探索和利用搜索空间。

构成的KOA-CNN-BiLSTM-Attention多变量回归预测模型的创新性在于以下几点:

KOA算法区别于传统智能算法的创新性:

①受到开普勒行星运动定律的启发:KOA算法受到开普勒行星运动定律的启发,将每个行星的位置作为候选解,并通过随机更新这些候选解来进行优化过程。这种设计使得KOA算法能够更有效地探索和利用搜索空间。

②基于物理学的元启发算法:KOA算法属于物理学的元启发算法,通过模拟行星围绕太阳的运动规律来进行优化。它利用行星的位置、质量、引力和轨道速度等参数来控制候选解的更新过程。这种基于物理学的方法使得KOA算法在全局优化问题上具有更好的可解释性。

③对比其他优化算法的优越性:通过与其他随机优化算法进行对比实验,KOA算法在收敛性和统计数据方面表现出色。实验结果表明,KOA算法在多个基准问题上优于其他比较算法。这表明KOA算法在解决优化问题时具有更高的效果和性能。

优化套用—基于开普勒优化算法(KOA)、卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)融合注意力机制(SelfAttention)的超前24步多变量时间序列回归预测算法KOA-CNN-LSTM-Attention

功能:

1、多变量特征输入,单序列变量输出,输入前一天的特征,实现后一天的预测,超前24步预测。

2、通过KOA优化算法优化学习率、卷积核大小、神经元个数,这3个关键参数,以最小MAPE为目标函数。

3、提供损失、RMSE迭代变化极坐标图;网络的特征可视化图;测试对比图;适应度曲线(若首轮精度最高,则适应度曲线为水平直线)。

4、提供MAPE、RMSE、MAE等计算结果展示。

适用领域:风速预测、光伏功率预测、发电功率预测、碳价预测等多种应用。

数据集格式:

前一天18个气象特征,采样时间为24小时,输出为第二天的24小时的功率出力,也就是18×24输入,1×24输出,一共有75个这样的样本。

预测值与实际值对比;训练特征可视化:

训练误差曲线的极坐标形式(误差由内到外越来越接近0);适应度曲线(误差逐渐下降)

KOA部分核心代码:

%%  定义Sun_Pos   = zeros(1, dim);  %% 包含迄今为止的最优解的向量,表示太阳Sun_Score = inf;            %% 包含迄今为止的最优分数的标量%%  控制参数%%Tc = 3;M0 = 0.1;lambda = 15;%% 第1步:初始化过程% 轨道离心率 (e)   orbital = rand(1, SearchAgents_no);                      %% Eq.(4) %% 轨道周期 (T) T = abs(randn(1, SearchAgents_no));                      %% Eq.(5)Positions = initialization(SearchAgents_no, dim, ub, lb);%% 初始化行星位置t = 0; %% 函数评估计数器 %%%%---------------------评估-----------------------%%for i = 1:SearchAgents_no    %% 目标函数嵌套    [PL_Fit(i),tsmvalue{i},tnet{i},tinfo{i}] = objectiveFunction(Positions(i,:)');        % 更新迄今为止的最优解    if PL_Fit(i) < Sun_Score      %% 问题为最大化时,请将其更改为>       Sun_Score = PL_Fit(i);     %% 更新迄今为止的最优分数       Sun_Pos = Positions(i,:);  %% 更新迄今为止的最优解       bestPred = tsmvalue{i} ;   %% 更新迄今为止的最准确预测结果       bestNet = tnet{i};       bestInfo  = tinfo{i};    endendwhile t < Tmax            %% 终止条件   [Order] = sort(PL_Fit);  %% 对当前种群中的解的适应度值进行排序 %% 函数评估t时的最差适应度值 worstFitness = Order(SearchAgents_no);                  %% Eq.(11) M = M0 * (exp(-lambda * (t / Tmax)));                   %% Eq.(12) %% 计算表示太阳与第i个解之间的欧几里得距离R for i = 1:SearchAgents_no    R(i) = 0;    for j = 1:dim       R(i) = R(i) + (Sun_Pos(j) - Positions(i, j))^2;   %% Eq.(7)    end    R(i) = sqrt(R(i)); end %% 太阳和对象i在时间t的质量计算如下: for i = 1:SearchAgents_no    sum = 0;    for k = 1:SearchAgents_no        sum = sum + (PL_Fit(k) - worstFitness);    end    MS(i) = rand * (Sun_Score - worstFitness) / (sum);   %% Eq.(8)    m(i) = (PL_Fit(i) - worstFitness) / (sum);           %% Eq.(9) end  %% 第2步:定义引力(F) % 计算太阳和第i个行星的引力,根据普遍的引力定律: for i = 1:SearchAgents_no    Rnorm(i) = (R(i) - min(R)) / (max(R) - min(R));      %% 归一化的R(Eq.(24))    MSnorm(i) = (MS(i) - min(MS)) / (max(MS) - min(MS)); %% 归一化的MS    Mnorm(i) = (m(i) - min(m)) / (max(m) - min(m));      %% 归一化的m    Fg(i) = orbital(i) * M * ((MSnorm(i) * Mnorm(i)) / (Rnorm(i) * Rnorm(i) + eps)) + (rand); %% Eq.(6) end

部分图片来源于网络,侵权联系删除!

欢迎感兴趣的小伙伴联系小编获得完整版代码哦~

关注小编会不定期推送高创新型、高质量的学习资料、文章程序代码,为你的科研加油助力!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/422063.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

一文读懂大语言模型

随着人工智能技术的飞速发展&#xff0c;自然语言处理&#xff08;NLP&#xff09;成为了热门的研究领域之一。在这一领域中&#xff0c;预训练大语言模型&#xff08;Pre-trained Large Language Models&#xff09;凭借其强大的语言理解和生成能力&#xff0c;逐渐成为了研究…

ChatGPT在国自然基金撰写中的妙用;从申请人的角度,带你一次入门;从评审专家的角度,带您逐一突破

目录 专题一 国自然项目介绍 专题二 基金的撰写技巧&#xff08;从申请人的角度&#xff0c;带你一次入门&#xff09; 专题三 基金的专项技巧&#xff08;从评审专家的角度&#xff0c;带您逐一突破&#xff09; 专题四 ChatGPT在基金撰写中的妙用 更多应用 您的基金撰写…

HarmonyOS 通过Web组件嵌套网络应用

我们今天来说说 在程序中嵌套一个网址地址 HarmonyOS中是通过一个简单的WEB组件来实现 网络应用就是相当于网址地址 通过链接将应用嵌入到手机当中 WEB组件需要两个参数 一个是 src 地址 要嵌套的网址 另一个是 控制器 我们可以先编写代码如下 import webview from "o…

【代码随想录算法训练营第二十四天|回溯算法的理论基础、77. 组合】

代码随想录算法训练营第二十四天|回溯算法的理论基础、77. 组合 回溯算法的理论基础77. 组合 回溯算法的理论基础 这里我觉得《代码随想录》和y总的课都比较好了 《代码随想录》 &#xff1a; https://programmercarl.com/0077.%E7%BB%84%E5%90%88%E4%BC%98%E5%8C%96.html#%E5…

手握中下牌型如何赢掼蛋?

中下牌型的特点&#xff1a;牌不是很好&#xff0c;炸弹少&#xff0c;但是牌型种类较多&#xff0c;并且有上手牌&#xff0c;适合配合对方&#xff0c;发动进攻。手握此类牌型&#xff0c;可采取协同进攻、全面防御、顺势突围三种方式来扭转双下局面。 一、协同进攻 此时应当…

【松叶漫话】程序员裁员潮:如何面对技术变革下的职业危机

一对来自中国的工程师夫妻在美身亡&#xff0c;疑因谷歌裁员致悲剧发生。在技术变革下&#xff0c;裁员对于程序员的影响到底有多大&#xff1f;一起来聊聊吧~ 方向一&#xff1a;技术变革 当前的技术变革涵盖了多个方面&#xff0c;其中一些主要趋势包括人工智能&#xff08;…

数据结构--数组和广义表

1. 数组的定义 略 2. 数组的顺序表示 由于数组定义后&#xff0c;数组的维度和每维的长度就不再改变&#xff0c;其结构是固定的&#xff0c;因此一般采用顺序存储结构。 3. 特殊矩阵的压缩矩阵 4. 广义表的定义和抽象操作 广义表一些操作可以看数据结构--广义表_空广义表的…

Unity 工厂方法模式(实例详解)

文章目录 在Unity中&#xff0c;工厂方法模式是一种创建对象的常用设计模式&#xff0c;它提供了一个接口用于创建对象&#xff0c;而具体的产品类是由子类决定的。这样可以将对象的创建过程与使用过程解耦&#xff0c;使得代码更加灵活和可扩展。 工厂模式的主要优点如下&…

二、arcgis 点shp数据处理

在工作中&#xff0c;很多时候客户会提供点坐标&#xff0c;那么要想把点坐标生成shp文件&#xff0c;有两种方法&#xff08;坐标系CGCS2000&#xff09;&#xff1a; 1.当只有个位数的点坐标时&#xff0c;可以直接在arcgisMap中添加&#xff0c;具体步骤如下&#xff1a; …

Qt 开发环境配置 vs和Qt creator

Qt 开发环境配置 vs和Qt creator 1、安装的软件 1、vs_Enterprise.exe 2、Qt creator (最好是最新的版本,低版本不支持vs2019) 下载地址&#xff1a;https://gofile-3535697530.cn1.quickconnect.cn/sharing/zMCh5ENgZ 密码&#xff1a;qt_dev 2、Qt Creator配置 1、打开…

htmx,它到底是框架还是库?

在最近的前端开发技术的探讨中&#xff0c;htmx经常成为热议的话题。一些人批评它&#xff0c;认为尽管htmx批评现代前端框架过于复杂&#xff0c;但它自己却似乎也是一个复杂的框架。这种看法值得我们深入思考。因为当你将任何第三方代码引入你的项目时&#xff0c;无论是htmx…

独立服务器有哪些优势

建立和维护一个强大的线上网站存在对于个人、企业和组织来说至关重要。而作为构建一个稳定、高效网站的基石之一&#xff0c;服务器的选择变得越来越重要。在服务器的选择中&#xff0c;独立服务器已经成为了许多人首选的方案。 独立服务器究竟有哪些优势呢&#xff1f; 1、稳…