【表情识别阅读笔记】Towards Semi-Supervised Deep FER with An Adaptive Confidence Margin

论文名: Towards Semi-Supervised Deep Facial Expression Recognition with An Adaptive Confidence Margin
论文来源: CVPR
发表时间: 2022-04
研究背景:
对大量图片或视频进行手工标注表情是一件极其繁琐的事情,因此现存的数据集并不够丰富。近年来,也有了一些大规模数据集的出现,并促进了深度面部表情识别FER的发展。然而,收集大规模带标签的数据是相当昂贵且困难的。同时,现有的许多数据标签往往无法满足实际细粒度的需求,若需要重新标记数据,还需要聘请相关领域的专家。因此,当下迫切需要开发一种可以在大量未标记数据上进行训练的方法,即半监督深度FER。
目前绝大部分使用到半监督学习方法的FER模型只选择部分未标记的数据来训练,即只选择那些置信度分数高于预定值的数据。这不但对部分数据造成了浪费,并且对所有表情类别设置同样的阈值是不科学的。有些面部表情,例如快乐,通常比某些面部表情具有更高的置信度分数,更容易识别。本文认为,应该对于不同类别的面部表情按其不同程度的学习难度进行分类,自适应地更新其置信度分数。从而使用所有未标记的数据来进一步提高识别性能。
论文的主要工作以及创新点:
本文的主要工作有,第一,提出了一种具有自适应置信区间Ada-CM的半监督DFER算法;第二,利用置信度分数较低的样本增强特征级的相似性,动态学习模型训练的所有未标记数据;第三在四个主流数据集上的大量实验表明,本方法的有效性超过当前完全监督的基线。
本文提出了一种端到端的具有自适应置信区间Ada-CM的半监督DFER算法,是目前第一个探索半监督深度面部表情识别中使用到动态置信度的解决方案。本文先将所有的数据分成两类(具体的分类方法将在下一段单独介绍)。子集I包括置信度分数高的样本,即置信度分数不低于界限阈值;子集II包括置信度分数低的样本,即置信度分数低于界限阈值。对于子集 I 中的样本,Ada-CM利用其用其伪标签对强增广SA的图片进行交叉熵训练;对于子集 II中的样本,用对比学习对弱增广的特征进行约束。
通过上一段的描述不难看出,将数据分成两个子集的依据是其置信度分数是否超过界限阈值。本文中,对于每个表情类别,阈值初始值为0.8。而且随着模型的提升,这个阈值界限会逐步升高,每个表情类别的阈值界限提升度也会有所不同。那么每个图片的置信度分数又是怎么得来的呢?首先,模型先对有表情的数据进行训练,用正确的预测得到阈值。然后,对于无标签的数据,对其进行弱增广 Week Augmentation,送入网络求出两个预测的均值。均值就是我们上文中提到的置信度分数。当均值大于阈值界限时,数据被分到第一个类别中,用其伪标签对强增广SA的图片进行交叉熵训练;当均值小于阈值界限时,数据被分到第二个类别中,用对比学习对弱增广的特征进行约束。
自适应置信区间Ada-CM管道图上图是Ada-CM的管道图,分为三个部分,部分a是总体流程设计图,部分b是自适应置信度构造原理图,部分c是对比目标图。在部分a中,最上面的一行是对于有标签数据的学习。每个前向传递都将弱增强WA标记样本输入到模型中以学习自适应置信度。具体来说,当模型的预测等于真实值时,将相应的置信度分数放入置信度中,然后将平均值用作学习的界限。接下来,将两个 WA 未标记样本分别输入到模型中,得到概率分布 pa 和 pb。然后,Ada-CM 根据置信度分数,即平均概率分布中的最大值,和置信界限Tt c 之间的关系将所有未标记的数据划分为两个子集。最后,通过熵最小化和对比目标分别探讨了具有伪标签的子集I中的样本和子集II中样本的特征相似度。

TodoList:

  1. 阈值固定的缺点
  2. 高/低置信度数据的使用情况,具体拿来做什么了
  3. 调查视频领域有没有半监督的
  4. 无标签的数据从哪来
  5. 一个表情的确认要多少帧

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/422563.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

eNSP学习——部分VLAN间互通、部分VLAN间隔离、VLAN内用户隔离(MUX-VLAN)

MUX VLAN(Multiplex VLAN)提供了一种通过VLAN进行网络资源控制 的机制。通过MUX VLAN提供的二层流量隔离的机制可以实现企业内部员 工之间互相通信,而企业外来访客之间的互访是隔离的。 特点: 一、主VLAN端口可以和所有VLAN通信 二…

设计亚马逊按销售排名功能

1: 定义 Use Cases 和 约束 Use cases 作用域内的Use Case Service 通过目录计算过去一周内最受欢迎的产品User 通过目录去View过去周内最受欢迎的产品Service 有高可用 作用域外 整个电商网站 设计组件(只是计算销售排名) 约束和假设…

Windows云服务器如何配置多用户登录?(Windows 2012)华为云官方文档与视频地址

Windows云服务器如何配置多用户登录?(Windows 2012)_弹性云服务器 ECS_故障排除_多用户登录_华为云 打开任务栏左下角的“服务器管理器”,在左侧列表中选中“本地服务器” 然后将右侧“远程桌面”功能的选项修改为“启用”&#x…

插混、增程、纯电为什么说纯电是未来的趋势

技术路线:插混、增程、纯电趋势判断 新能源汽车目前有纯电动、增程式、插电式3 种主流技术路径,其中增程式和插电式均为混动技术。纯电动汽车是指以动力电池为动力,用电机驱动车轮行驶;混动技术分为串联、并联、混联3 种模式&…

计算机网络——第四层:传输层以及TCP UDP

1. 传输层的协议 1.1 TCP (传输控制协议) - rfc793 连接模式的传输。 保证按顺序传送数据包。 流量控制、错误检测和在数据包丢失时的重传。 用于需要可靠传输的应用,如网络(HTTP/HTTPS)、电子邮件(SMTP, IMAP, POP3)…

Mybatis 动态SQL条件查询(注释和XML方式都有)

需求 : 根据用户的输入情况进行条件查询 新建了一个 userInfo2Mapper 接口,然后写下如下代码,声明 selectByCondition 这个方法 package com.example.mybatisdemo.mapper; import com.example.mybatisdemo.model.UserInfo; import org.apache.ibatis.annotations.*; import j…

跟着我学Python进阶篇:03. 面向对象(下)

往期文章 跟着我学Python基础篇:01.初露端倪 跟着我学Python基础篇:02.数字与字符串编程 跟着我学Python基础篇:03.选择结构 跟着我学Python基础篇:04.循环 跟着我学Python基础篇:05.函数 跟着我学Python基础篇&#…

Django框架二

一、模型层及ORM 1.模型层定义 负责跟数据库之间进行通信 2.Django配置mysql 安装mysqlclient,mysqlclient版本最好在13.13以上 pip3 install mysqlclient DATABASES {default: {ENGINE: django.db.backends.mysql,NAME: "mysite1",USER:root,PASSWO…

U-Boot 中使用 nfs 命令加载文件报错指南

目录 问题一问题描述错误原因解决方案 问题二问题描述解决方案 更多内容 在嵌入式 Linux 开发中,我们经常使用 nfs 命令加载服务端的共享文件或者挂载文件系统。关于服务端 NFS 服务的搭建可以参考基于 NFS 的文件共享实现。 U-Boot 也支持了 nfs 命令,…

JRT和springboot比较测试

想要战胜他,必先理解他。这两天系统的学习Maven和跑springboot工程,从以前只是看着复杂,现在到亲手体验一下,亲自实践的才是更可靠的了解。 第一就是首先Maven侵入代码结构,代码一般要按约定搞src/main/java。如果是能…

2526. 随机数生成器(BSGS,推导)

题目路径: https://www.acwing.com/problem/content/2528/ 思路:

【UEFI基础】EDK网络框架(MTFTP4)

MTFTP4 在TCP/IP网络协议族中有FTP协议,但是UEFI下的MTFTP4并不是对FTP协议的实现,两者虽然功能上差不多,但是实现却是不同的。FTP下层使用TCP来连接: 而MTFTP4下层却是UDP4。 MTFTP4代码综述 MTFTP4的实现在NetworkPkg\Mtftp4…